CONTRACTIVE PROJECTIONS AND PREDICTION OPERATORS ${ }^{1}$

BY M. M. RAO
Communicated by Jack Schwartz, July 7, 1969

1. Introduction. The purpose of this note is to present some results on characterizations of subspaces of a general class of Banach function spaces (BFS) admitting contractive projections onto them, and to include an application to nonlinear prediction (and approximation) theory.

Let L^{ρ} be the subspace of all measurable scalar functions f on (Ω, Σ, μ) with $\rho(f)=\rho(|f|)<\infty$, where $\rho(\cdot)$ is a function norm, i.e., a norm with the additional properties
(i) $0 \leqq f_{n} \uparrow \Rightarrow \rho\left(f_{n}\right) \uparrow$, and
(ii) $\rho(\cdot)$ verifies the triangle inequality for infinite sums. Then L^{p} is also complete, called a BFS, (cf. [6] and [4]). It will also be assumed, for convenience, that $0 \leqq f_{n} \uparrow f \Rightarrow \rho\left(f_{n}\right) \uparrow \rho(f)$, the Fatou property. $\rho(\cdot)$ is an absolutely continuous norm (a.c.n.) if for each $f \in L^{\rho}$, $\rho\left(f \chi_{A_{n}}\right) \rightarrow 0$ for any A_{n} in $\Sigma, A_{n} \downarrow \varnothing$. If \mathfrak{X} is a B-space, L_{X}^{ρ} is the space of \mathfrak{X}-valued strongly measurable functions f on Ω, with $\rho\left(|f|_{x}\right)<\infty$, where $\rho(\cdot)$ is as above. Then L_{x}^{ρ} is also complete. Finally let \mathscr{N}_{x}^{ρ} $=\overline{\mathrm{sp}}\left\{f x: f \in L^{p}, x \in \mathfrak{X}\right\} \subset L_{x}^{p}$. A projection is a linear idempotent operator.

The projection problem, stated at the outset, has been first treated for $L^{\rho}=L^{1}$ in [5], and a more detailed consideration of the same case, with $\mu(\Omega)<\infty$, has been given in [2]. If $L^{\rho}=L^{p}$, also with $\mu(\Omega)<\infty$, it was then considered in [1], and these results were extended for $L^{p}=L^{\Phi}$, the Orlicz spaces, with a.c.n. and $\mu \sigma$-finite, in [10]. The general solution of the problem in the scalar case, and a less general one in the vector case, will be given below.
2. Contractive projections. Let $\delta \subset L^{\rho}$ be a closed subspace. If $L^{\rho} \neq L^{2}$, then, as is well known, not every S is the range of a bounded projection. The positive solution is given by the following result for L^{ρ}-spaces. (An operator T is positive if $T f \geqq 0$ for $f \geqq 0$.)

Theorem 1. If (Ω, Σ, μ) is a measure space, let $L^{\rho}(\Sigma)$ be the $B F S$ defined above. Consider the statements:
(a) \mathcal{S} is the range of a (positive) contractive projection in $L^{p}(\Sigma)$.
(b) there is an isometric isomorphism $\Psi: L^{p}(\Sigma) \mapsto L^{\rho}(\Sigma),(\Psi=$ identity) such that

[^0]
[^0]: ${ }^{1}$ Supported, in part, under the NSF grant GP-8777.

