CONTRACTIVE PROJECTIONS AND PREDICTION OPERATORS¹

BY M. M. RAO

Communicated by Jack Schwartz, July 7, 1969

1. Introduction. The purpose of this note is to present some results on characterizations of subspaces of a general class of Banach function spaces (BFS) admitting contractive projections onto them, and to include an application to nonlinear prediction (and approximation) theory.

Let L^{ρ} be the subspace of all measurable scalar functions f on (Ω, Σ, μ) with $\rho(f) = \rho(|f|) < \infty$, where $\rho(\cdot)$ is a function norm, i.e., a norm with the additional properties

(i) $0 \leq f_n \uparrow \Rightarrow \rho(f_n) \uparrow$, and

(ii) $\rho(\cdot)$ verifies the triangle inequality for infinite sums. Then L^{ρ} is also complete, called a BFS, (cf. [6] and [4]). It will also be assumed, for convenience, that $0 \leq f_n \uparrow f \Rightarrow \rho(f_n) \uparrow \rho(f)$, the Fatou property. $\rho(\cdot)$ is an absolutely continuous norm (a.c.n.) if for each $f \in L^{\rho}$, $\rho(f\chi_{A_n}) \preceq 0$ for any A_n in Σ , $A_n \downarrow \emptyset$. If \mathfrak{X} is a *B*-space, $L^{\rho}_{\mathfrak{X}}$ is the space of \mathfrak{X} -valued strongly measurable functions f on Ω , with $\rho(|f|_{\mathfrak{X}}) < \infty$, where $\rho(\cdot)$ is as above. Then $L^{\rho}_{\mathfrak{X}}$ is also complete. Finally let $\mathfrak{M}^{\rho}_{\mathfrak{X}} = \overline{\operatorname{sp}} \{fx: f \in L^{\rho}, \ x \in \mathfrak{X}\} \subset L^{\rho}_{\mathfrak{X}}$. A projection is a linear idempotent operator.

The projection problem, stated at the outset, has been first treated for $L^{\rho} = L^{1}$ in [5], and a more detailed consideration of the same case, with $\mu(\Omega) < \infty$, has been given in [2]. If $L^{\rho} = L^{p}$, also with $\mu(\Omega) < \infty$, it was then considered in [1], and these results were extended for $L^{\rho} = L^{\Phi}$, the Orlicz spaces, with a.c.n. and $\mu \sigma$ -finite, in [10]. The general solution of the problem in the scalar case, and a less general one in the vector case, will be given below.

2. Contractive projections. Let $S \subset L^{\rho}$ be a closed subspace. If $L^{\rho} \neq L^{2}$, then, as is well known, not every S is the range of a bounded projection. The positive solution is given by the following result for L^{ρ} -spaces. (An operator T is positive if $Tf \ge 0$ for $f \ge 0$.)

THEOREM 1. If (Ω, Σ, μ) is a measure space, let $L^{p}(\Sigma)$ be the BFS defined above. Consider the statements:

(a) S is the range of a (positive) contractive projection in $L^{\rho}(\Sigma)$.

(b) there is an isometric isomorphism $\Psi: L^{\rho}(\Sigma) \mapsto L^{\rho}(\Sigma)$, $(\Psi = iden$ tity) such that

¹ Supported, in part, under the NSF grant GP-8777.