# COBORDISM OF REGULAR $O(n)$-MANIFOLDS 

## BY CONNOR LAZAROV AND ARTHUR WASSERMAN

Communicated by Frank Peterson, April 15, 1969
A $C^{\infty}$ manifold $M$ together with a $C^{\infty}$ action of $O(n)$ on $M$ is said to be a regular $O(n)$-manifold if, for each $m \in M$, the isotropy group of $m, O(n)_{m}=\{g \in O(n) \mid g m=m\}$, is conjugate in $O(n)$ to $O(p)$ for some $p \leqq n ; O(p)$ is understood to be imbedded in $O(n)$ in the standard way [3]. Compact regular $O(n)$-manifolds $M_{1}^{s}, M_{2}^{s}$ are said to be (regularly) cobordant if there exists a compact regular $O(n)$-manifold $W^{s+1}$ with $\partial W^{s+1}$ equivariantly diffeomorphic to $M_{1} \cup M_{2}$.

The set of cobordism classes of regular $O(n)$-manifolds of dimension $s$ will be denoted by $\mathfrak{N O}(n)_{s} . \mathfrak{N O}(n)_{*}$ is a graded algebra over $\mathfrak{N}_{*}$, the cobordism ring of unoriented manifolds; addition is given by disjoint union, multiplication by cartesian product (with the diagonal action $\left.g\left(m_{1}, m_{2}\right)=\left(g m_{1}, g m_{2}\right),\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}\right)$ and $\mathfrak{\Re} *$ acts by cartesian product (with the obvious action $g\left(m_{1}, m_{2}\right)=\left(m_{1}, g m_{2}\right),\left(m_{1}, m_{2}\right)$ $\left.\in M_{1} \times M_{2},\left[M_{1}\right] \in \mathfrak{R}_{*},\left[M_{2}\right] \in \mathfrak{N} O(n)_{*}\right)$.

Examples. (A) Let $M=$ point. Then $[M] \in \mathfrak{N} O(n)$. The submodule of $\mathfrak{N O}(n)$ (as a $\Re_{*}$ module) generated by [ $M$ ] [i.e. trivial $O(n)$ manifolds] is isomorphic to $\mathfrak{R}_{*}$ and we clearly have a decomposition $\mathfrak{N O}(n)_{*}=\mathfrak{N}_{*} \oplus \tilde{\mathfrak{N}} O(n)_{*}$.
(B) Any manifold with a differentiable involution is a regular $O(1)$ manifold.
(C) If $M$ is a regular $O(n)$ manifold then by restricting the action to $O(n-1) \subset O(n)$ we get a regular $O(n-1)$ manifold. Since restriction respects cobordism there is an $\mathfrak{N}_{*}$ map $\rho: \mathfrak{N O}(n)_{*} \rightarrow \mathfrak{N O} O(n-1)_{*}$.
(D) Given a regular $O(n)$ manifold $M$, one can extend the action to a regular $O(n+1)$ action on $O(n+1) \times_{o(n)} M$ and hence there is an $\mathfrak{N}_{*}$ map ext: $\mathfrak{N O}(n)_{s} \rightarrow \mathfrak{N O}(n+1)_{s+n}$.
(E) Let $M$ be a regular $O(1)$ manifold and let $P$ be an $O(n-1)$ principal bundle. Then $P \times M$ is an $O(n-1) \times O(1)$ manifold and $O(n) \times_{o(n-1) \times O(1)} P \times M$ is a regular $O(n)$ manifold. Hence, there is a homomorphism $h: \mathfrak{N O}(1) \otimes \mathfrak{n}_{*} \mathfrak{R}_{*}(B O(n-1)) \rightarrow \mathfrak{N} O(n)_{*}$.

Theorem. (i) $\mathfrak{M O}(n)_{*}$ is a free $\mathfrak{N}_{*}$ module on countably many generators:
(ii) the algebra structure is given by $x y=0$ for $x, y \in \tilde{\mathfrak{N}} O(n)_{*}, n>1$,
(iii) $\rho \mid \tilde{\mathfrak{R}} O(n)_{*}$ is the zero map,
(iv) ext $\mid \tilde{\mathfrak{R}} \mathrm{O}(n)_{*}$ is a monomorphism onto a direct summand of $\mathfrak{N O}(n+1)_{*} ;$ ext $\mid \mathfrak{R}_{*}$ is zero,
(v) $h$ is an epimorphism.

