COBORDISM OF REGULAR O(n)-MANIFOLDS

BY CONNOR LAZAROV AND ARTHUR WASSERMAN

Communicated by Frank Peterson, April 15, 1969

A C^{∞} manifold M together with a C^{∞} action of O(n) on M is said to be a regular O(n)-manifold if, for each $m \in M$, the isotropy group of m, $O(n)_m = \{g \in O(n) \mid gm = m\}$, is conjugate in O(n) to O(p) for some $p \leq n$; O(p) is understood to be imbedded in O(n) in the standard way [3]. Compact regular O(n)-manifolds M_1^s , M_2^s are said to be (regularly) cobordant if there exists a compact regular O(n)-manifold W^{s+1} with ∂W^{s+1} equivariantly diffeomorphic to $M_1 \cup M_2$.

The set of cobordism classes of regular O(n)-manifolds of dimension s will be denoted by $\Re O(n)_s$. $\Re O(n)_*$ is a graded algebra over \Re_* , the cobordism ring of unoriented manifolds; addition is given by disjoint union, multiplication by cartesian product (with the diagonal action $g(m_1, m_2) = (gm_1, gm_2)$, $(m_1, m_2) \in M_1 \times M_2$) and \Re_* acts by cartesian product (with the obvious action $g(m_1, m_2) = (m_1, gm_2)$, $(m_1, m_2) \in M_1 \times M_2$, $[M_1] \in \Re_*$, $[M_2] \in \Re O(n)_*$).

EXAMPLES. (A) Let M = point. Then $[M] \in \mathfrak{N}O(n)$. The submodule of $\mathfrak{N}O(n)$ (as a \mathfrak{N}_* module) generated by [M] [i.e. trivial O(n) manifolds] is isomorphic to \mathfrak{N}_* and we clearly have a decomposition $\mathfrak{N}O(n)_* = \mathfrak{N}_* \oplus \tilde{\mathfrak{N}}O(n)_*$.

- (B) Any manifold with a differentiable involution is a regular O(1) manifold.
- (C) If M is a regular O(n) manifold then by restricting the action to $O(n-1) \subset O(n)$ we get a regular O(n-1) manifold. Since restriction respects cobordism there is an \Re_* map $\rho: \Re O(n)_* \to \Re O(n-1)_*$.
- (D) Given a regular O(n) manifold M, one can extend the action to a regular O(n+1) action on $O(n+1) \times_{O(n)} M$ and hence there is an \Re_* map ext: $\Re O(n)_* \to \Re O(n+1)_{s+n}$.
- (E) Let M be a regular O(1) manifold and let P be an O(n-1) principal bundle. Then $P \times M$ is an $O(n-1) \times O(1)$ manifold and $O(n) \times_{O(n-1) \times O(1)} P \times M$ is a regular O(n) manifold. Hence, there is a homomorphism $h: \Re O(1) \otimes_{\mathfrak{R}^*} \Re_*(BO(n-1)) \to \Re O(n)_*$.

THEOREM. (i) $\mathfrak{N}O(n)_*$ is a free \mathfrak{N}_* module on countably many generators:

- (ii) the algebra structure is given by xy = 0 for $x, y \in \widetilde{\Re}O(n)_*, n > 1$,
- (iii) $\rho \mid \widetilde{\mathfrak{N}}O(n)_*$ is the zero map,
- (iv) ext $|\tilde{\mathfrak{N}}O(n)_*|$ is a monomorphism onto a direct summand of $\mathfrak{N}O(n+1)_*$; ext $|\mathfrak{N}_*|$ is zero,
 - (v) h is an epimorphism.