AN *n*-DIMENSIONAL EXTENSION OF PICARD'S THEOREM

BY H. WU¹

Communicated by M. H. Protter, March 10, 1969

We will prove the following theorem:

For each positive integer n, let

$$\rho(n) = \left(\frac{n}{2} + 1\right)^2 + 1 \qquad \text{if n is even,}$$
$$= \left(\frac{n+1}{2}\right) \left(\frac{n+3}{2}\right) + 1 \quad \text{if n is odd.}$$

Let \mathbb{C}^m be the m-dimensional complex euclidean space and $P_n\mathbb{C}$ the n-dimensional complex projective space. Then every holomorphic mapping $x:\mathbb{C}^m\to P_n\mathbb{C}$ such that $x(\mathbb{C}^m)$ omits p(n) hyperplanes in general position must reduce to a constant.

Note that $\rho(1) = 3$ and P_1C is just the Riemann sphere. So when m = n = 1, this is exactly the classical theorem of Emile Picard. The first few values of ρ are: $\rho(2) = 5$, $\rho(3) = 7$, $\rho(4) = 10$, $\rho(5) = 13$, $\rho(6) = 17$, $\rho(7) = 21$, $\rho(8) = 26$, $\rho(9) = 31$, $\rho(10) = 37$.

Recently, Kobayashi introduced the notion of a hyperbolic (complex) manifold, [3], [4] (cf. also Definition 1.3 of [6]). A hyperbolic manifold has most of the useful analytic properties of a bounded domain in C^n , including the fact that every holomorphic mapping of Cinto it reduces to a constant. There is the natural question of obtaining hyperbolic manifolds by removing suitable subsets of P_nC . P. A. Griffiths suggested that P_nC minus a *singular* hypersurface of a very high degree might be hyperbolic. On the other hand, P. J. Kiernan has proved in [2] that P_nC minus 2n hyperplanes in general position is never hyperbolic. The above result suggests the

CONJECTURE. $P_n C$ minus $\rho(n)$ hyperplanes in general position is hyperbolic.

The determination of the smallest value of $\rho(n)$ for which the above theorem and conjecture remain valid is probably a difficult problem.

The Picard theorem may be generalized in yet another way. We formulate a second

¹ Research partially supported by the National Science Foundation. I wish to thank Professor S. S. Chern for his encouragement.