AN n-DIMENSIONAL EXTENSION OF PICARD'S THEOREM

BY H. WU ${ }^{1}$
Communicated by M. H. Protter, March 10, 1969

We will prove the following theorem:
For each positive integer n, let

$$
\begin{array}{rlrl}
\rho(n) & =\left(\frac{n}{2}+1\right)^{2}+1 & & \text { if } n \text { is even, } \\
& =\left(\frac{n+1}{2}\right)\left(\frac{n+3}{2}\right)+1 \quad \text { if } n \text { is odd. } .
\end{array}
$$

Let C^{m} be the m-dimensional complex euclidean space and $P_{n} C$ the n-dimensional complex projective space. Then every holomorphic mapping $x: C^{m} \rightarrow P_{n} C$ such that $x\left(\mathbf{C}^{m}\right)$ omits $\rho(n)$ hyperplanes in general position must reduce to a constant.

Note that $\rho(1)=3$ and $P_{1} C$ is just the Riemann sphere. So when $m=n=1$, this is exactly the classical theorem of Emile Picard. The first few values of ρ are: $\rho(2)=5, \rho(3)=7, \rho(4)=10, \rho(5)=13, \rho(6)=17$, $\rho(7)=21, \rho(8)=26, \rho(9)=31, \rho(10)=37$.

Recently, Kobayashi introduced the notion of a hyperbolic (complex) manifold, [3], [4] (cf. also Definition 1.3 of [6]). A hyperbolic manifold has most of the useful analytic properties of a bounded domain in C^{n}, including the fact that every holomorphic mapping of C into it reduces to a constant. There is the natural question of obtaining hyperbolic manifolds by removing suitable subsets of $P_{n} C$. P. A. Griffiths suggested that $P_{n} C$ minus a singular hypersurface of a very high degree might be hyperbolic. On the other hand, P. J. Kiernan has proved in [2] that $P_{n} C$ minus $2 n$ hyperplanes in general position is never hyperbolic. The above result suggests the

Conjecture. $P_{n} C$ minus $\rho(n)$ hyperplanes in general position is hyperbolic.

The determination of the smallest value of $\rho(n)$ for which the above theorem and conjecture remain valid is probably a difficult problem.

The Picard theorem may be generalized in yet another way. We formulate a second

[^0]
[^0]: ${ }^{1}$ Research partially supported by the National Science Foundation. I wish to thank Professor S. S. Chern for his encouragement.

