ON A NEW FAMILY OF SYMMETRY CODES AND RELATED NEW FIVE-DESIGNS

BY VERA PLESS

Communicated by Wallace Givens, May 15, 1969

For every prime $p \equiv -1$ (3) we define a self-orthogonal (2p+2, p+1) code over GF (3). It can be shown that the group leaving a (2p+2, p+1) code invariant is $PSL_2(p)$. The minimum weights of the first five codes in the family are determined and lead to new 5-designs.

Let t, r, and n be integers with $t \le r \le n$. A λ ; t-r-n design D is a collection of subsets of the n integers, each subset containing r elements, such that any t-subset of the n integers is contained in the same number λ of subsets in D. Some designs, a 1; 5-6-12, a 1; 5-8-24, and a 48; 5-12-24 associated with the Mathieu groups M_{12} and M_{24} , have been known for a long time. Recently, [1] and [5], 2; 5-6-12 and 2; 5-8-24 designs have been found. Using coding theory [2] other 5-designs were found for n=24 and n=48. We have found new 5-designs for n=36 and n=60 and a number of r's. Also we found new 5-designs for n=24 and n=48 which are not equivalent to the ones mentioned above. Two t-designs are called equivalent if there is a permutation of the n integers so that the subsets of D go onto subsets in D.

Let V_{2p+2} be a vector space over GF(3) with a fixed, orthonormal basis. We call a subspace of this space an error correcting code. We define a family of codes of dim(p+1) (referred to as (2p+2, p+1)codes) by a basis (I, S_p) where S_p is given below.

$$S_{p} = \begin{bmatrix} \infty & 0 & 1 & \cdots & j & \cdots & (p-1) \\ 0 & 1 & 1 & 1 & 1 \\ \chi(-1) & \chi(0) & \chi(1) & \chi(j) & \chi(p-1) \\ \vdots \\ \chi(-1) & & \\ \chi(j-i) & & \\ \chi(-1) & & \\ \chi(j-i) &$$

where $\chi(0) = 0$, $\chi(a \text{ square}) = 1$, $\chi(a \text{ nonsquare}) = -1$. We refer to the code generated by (I, S_p) as C(p).