ON A NEW FAMILY OF SYMMETRY CODES AND RELATED NEW FIVE-DESIGNS

BY VERA PLESS

Communicated by Wallace Givens, May 15, 1969
For every prime $p \equiv-1$ (3) we define a self-orthogonal $(2 p+2$, $p+1$) code over GF (3). It can be shown that the group leaving a $(2 p+2, p+1)$ code invariant is $\mathrm{PSL}_{2}(p)$. The minimum weights of the first five codes in the family are determined and lead to new 5-designs.

Let t, r, and n be integers with $t \leqq r \leqq n$. A $\lambda ; t-r-n$ design D is a collection of subsets of the n integers, each subset containing r elements, such that any t-subset of the n integers is contained in the same number λ of subsets in D. Some designs, a $1 ; 5-6-12$, a 1 ; $5-8-24$, and a 48; 5-12-24 associated with the Mathieu groups M_{12} and M_{24}, have been known for a long time. Recently, [1] and [5], 2;5-6-12 and 2; 5-8-24 designs have been found. Using coding theory [2] other 5-designs were found for $n=24$ and $n=48$. We have found new 5 -designs for $n=36$ and $n=60$ and a number of r 's. Also we found new 5 -designs for $n=24$ and $n=48$ which are not equivalent to the ones mentioned above. Two t-designs are called equivalent if there is a permutation of the n integers so that the subsets of D go onto subsets in D.

Let $V_{2 p+2}$ be a vector space over GF (3) with a fixed, orthonormal basis. We call a subspace of this space an error correcting code. We define a family of codes of $\operatorname{dim}(p+1)$ (referred to as $(2 p+2, p+1)$ codes) by a basis (I, S_{p}) where S_{p} is given below.

$$
\begin{array}{c|ccccc}
& \infty & 0 & 1 & \cdots & j \cdots \\
\infty & 0 & 1 & 1 & 1 & 1 \\
0 & \chi(-1) & \chi(0) & \chi(1) & \chi(j) & \chi(p-1) \\
S_{p}=\begin{array}{c}
0
\end{array} & \chi(-1) & & & & \\
\vdots & & & & & \\
\vdots & \chi(-1) & & & \chi(j-i) & \\
\vdots & & & &
\end{array}
$$

where $\chi(0)=0, \chi($ a square $)=1, \chi($ a nonsquare $)=-1$. We refer to the code generated by (I, S_{p}) as $C(p)$.

