NORMS ON QUOTIENT SPACES

BY ARNOLD LEBOW AND MARTIN SCHECHTER

Communicated by Bertram Yood, June 23, 1967

1. Perturbation classes. Let S be a subset of a Banach space α over the complex numbers, and assume that $\alpha \le c$ for each scalar $\alpha \ne 0$. Let P(\$) denote the set of elements of α that perturb S into itself, i.e., $P(\$) = \{a \in \alpha : a + s \in \$$ for all $s \in \$\}$.

PROPOSITION 1.1. P(S) is a linear subspace of G. If S is an open subset of G, then P(S) is closed.

PROPOSITION 1.2. Let $S_1 \subset S_2$ be two such subsets, and assume that S_1 is open and S_2 does not contain any boundary point of S_1 . Then $P(S_2) \subset P(S_1)$.

PROPOSITION 1.3. Assume that α is a Banach algebra with identity e. Let G denote the set of invertible elements in α . If GS \subset S, then P(S) is a left ideal. If SG \subset S, then P(S) is a right ideal.

PROPOSITION 1.4. P(G) = R, the radical of α .

Let G_l (G_r) denote the set of left (right) invertible elements of \mathfrak{A} , and let H_l (H_r) denote the set of elements of \mathfrak{A} that are not left (right) topological divisors of zero.

THEOREM 1.5. $P(H_l) \subset P(G_l) = R = P(G_r) \supset P(H_r)$.

Let X be a Banach space, and let B(X) $[\mathfrak{K}(X)]$ denote the set of bounded (compact) linear operators on X. Take $\mathfrak{a} = B(X)/\mathfrak{K}(X)$ and let π be the canonical homomorphism from B(X) to \mathfrak{a} . Set

 $\Phi(X) = \pi^{-1}(G), \qquad \Phi_l(X) = \pi^{-1}(G_l), \qquad \Phi_r(X) = \pi^{-1}(G_r).$

It is well known [6] that $\Phi_l(X)$ consists of those operators having finite nullity and closed, complemented ranges, and that $\Phi_r(X)$ consists of those operators having complemented null spaces and closed ranges with finite codimensions. $\Phi(X) = \Phi_l(X) \cap \Phi_r(X)$ is the set of Fredholm operators on X.

THEOREM 1.6. $P(\Phi) = P(\Phi_l) = P(\Phi_r) = \pi^{-1}(R)$.

Let Z be any subset of $\{0, \pm 1, \pm 2, \cdots, \pm \infty\}$, and let Φ_s be the collection of those operators $A \in \Phi_l(X) \cup \Phi_r(X)$ such that $i(A) \in Z$, where $i(A) = \dim N(A) - \dim N(A')$.

THEOREM 1.7. $P(\Phi_s) = \pi^{-1}(R)$.