A NOTE ON THE NUMBER OF INTEGRAL IDEALS OF BOUNDED NORM IN A QUADRATIC NUMBER FIELD

BY BRUCE C. BERNDT

Communicated by Paul Bateman, June 25, 1969
Let K be an algebraic number field of degree 2 and $F(n)$ the number of nonzero integral ideals of norm n in K. Define $P(x)$ by

$$
\sum_{n \leq x} F(n)=\lambda h x+P(x)
$$

where h denotes the class number of K and

$$
\lambda=2^{r_{1}+r_{2}} \pi^{r_{2}} R /(w \sqrt{|\Delta|}),
$$

where r_{1} is the number of real conjugates, $2 r_{2}$ the number of imaginary conjugates, R the regulator, w the number of roots of unity, and Δ the discriminant of K. It is known that [8, Satz 210] $P(x)=O\left(x^{1 / 3}\right)$. On the other hand, Landau [9] also showed that

$$
P(x)=\Omega_{ \pm}\left(x^{1 / 4}\right)
$$

Improvements were made by Szegö and Walfisz [10] and Chandrasekharan and Narasimhan [2], [3]. The former authors showed that if K is imaginary,

$$
P(x)=\Omega_{-}\left(\{x \log x\}^{1 / 4}\right),
$$

and if K is real

$$
P(x)=\Omega_{+}\left(\{x \log x\}^{1 / 4}\right)
$$

The latter showed that

$$
\begin{equation*}
\lim \sup _{x \rightarrow \infty} \inf P(x) / x^{1 / 4}= \pm \infty \tag{1}
\end{equation*}
$$

In 1961 Gangadharan [5], improving a method of Ingham, made improvements on (1) for the corresponding problems on $r(n)$, the number of representations of n as the sum of two squares, and $d(n)$, the number of divisors of n. Using Gangadharan's method, we can obtain improvements on (1) for our problem. Before stating this result we must make some definitions.

Definition 1. Let $S_{x}(x \geqq 2)$ be the set of all real numbers η expressible in the form

