MAXIMAL RATES OF DECAY OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

BY WALTER LITTMAN

Communicated by M. H. Protter, May 23, 1969
It has been proved by C. Morawetz [2] that if $u(x, t)$ is a solution of the relativistic wave equation

$$
u_{t t}-\Delta u+u=0
$$

for all $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and t, having finite energy at $t=0$, and vanishing in the forward light cone $|x|<t, t>0$, then it must vanish identically. On the other hand the author [1] has obtained a generalization of Rellich's Theorem (concerning decay of solutions of the reduced wave equation $\Delta u+u=0$) to a class of (not necessarily elliptic) equations with constant coefficients of arbitrary order. The present note is intended to announce a number of results which are natural generalizations of and improvements of both aforementioned results. Detailed proofs will appear elsewhere.

Let $P(\xi)=P\left(\xi_{1}, \xi_{2}, \cdots, \xi_{N}\right)$ be a polynomial with real coefficients. Throughout, we make the following assumptions:

1. The real solution set S of $P(\xi)=0$ is nonempty.
2. Grad $P(\xi) \neq 0$ in S, and hence S is a smooth $N-1$ dimensional manifold.
3. The Gaussian curvature of S never vanishes.

Assign a unit normal n to each point of S, varying continuously. The totality of all n fill an open set \mathfrak{N} on the unit sphere, giving rise to an open cone \Re in R^{N} in the sense that K consists of all $r n, n \in \mathfrak{F}$, $r \geqq 0$.

Define $\mathfrak{N}_{\boldsymbol{e}}$ as that subset of \mathfrak{N} consisting of points whose (spherical) distance to the boundary of \mathfrak{N} exceeds ϵ. K_{e} will denote the cone generated by $\mathfrak{N}_{e},-\mathfrak{N}$ will denote the set of vectors $-n$, with $n \in \mathfrak{N}$, and similarly for $-\mathfrak{K} . \mathfrak{N}^{\prime}$ denotes the complement of \mathfrak{N} on the unit sphere, and K^{\prime} the corresponding cone. $\overline{\mathscr{K}}$ denotes the closure of K.

We will write

$$
L u \equiv P\left(\frac{1}{i} \frac{\partial}{\partial x_{1}}, \cdots, \frac{1}{i} \frac{\partial}{\partial x_{N}}\right) u \equiv P\left(\frac{1}{i} \frac{\partial}{\partial x}\right) u .
$$

Theorem I. Suppose, under the foregoing Assumptions 1-3, $u(x)$ is a function satisfying

