MAXIMAL RATES OF DECAY OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

BY WALTER LITTMAN

Communicated by M. H. Protter, May 23, 1969

It has been proved by C. Morawetz [2] that if u(x, t) is a solution of the relativistic wave equation

$$u_{tt}-\Delta u+u=0$$

for all $x = (x_1, x_2, \dots, x_n)$ and t, having finite energy at t=0, and vanishing in the forward light cone |x| < t, t > 0, then it must vanish identically. On the other hand the author [1] has obtained a generalization of Rellich's Theorem (concerning decay of solutions of the reduced wave equation $\Delta u + u = 0$) to a class of (not necessarily elliptic) equations with constant coefficients of arbitrary order. The present note is intended to announce a number of results which are natural generalizations of and improvements of both aforementioned results. Detailed proofs will appear elsewhere.

Let $P(\xi) = P(\xi_1, \xi_2, \dots, \xi_N)$ be a polynomial with real coefficients. Throughout, we make the following assumptions:

- 1. The real solution set S of $P(\xi) = 0$ is nonempty.
- 2. Grad $P(\xi) \neq 0$ in S, and hence S is a smooth N-1 dimensional manifold.
- 3. The Gaussian curvature of S never vanishes.

Assign a unit normal n to each point of S, varying continuously. The totality of all n fill an open set \mathfrak{N} on the unit sphere, giving rise to an open cone \mathfrak{K} in \mathbb{R}^N in the sense that \mathfrak{K} consists of all $rn, n \in \mathfrak{N}$, $r \ge 0$.

Define \mathfrak{N}_{\bullet} as that subset of \mathfrak{N} consisting of points whose (spherical) distance to the boundary of \mathfrak{N} exceeds ϵ . \mathfrak{K}_{\bullet} will denote the cone generated by \mathfrak{N}_{ϵ} . $-\mathfrak{N}$ will denote the set of vectors -n, with $n \in \mathfrak{N}$, and similarly for $-\mathfrak{K}$. \mathfrak{N}' denotes the complement of \mathfrak{N} on the unit sphere, and \mathfrak{K}' the corresponding cone. $\overline{\mathfrak{K}}$ denotes the closure of K.

We will write

$$Lu \equiv P\left(\frac{1}{i} \frac{\partial}{\partial x_1}, \cdots, \frac{1}{i} \frac{\partial}{\partial x_N}\right) u \equiv P\left(\frac{1}{i} \frac{\partial}{\partial x}\right) u.$$

THEOREM I. Suppose, under the foregoing Assumptions 1-3, u(x) is a function satisfying