UNIFORM ALGEBRAS ON CURVES

BY H. ALEXANDER

Communicated by Irving Glicksberg, April 28, 1969

1. Results. A recent result of H. S. Shapiro and A. L. Shields [4] states that if f and g are continuous complex valued functions on the unit interval I such that together they separate the points of I and also that f alone separates all but one pair of points, then the closed subalgebra of C(I) generated by f and g is all of C(I). Two generalizations are:

THEOREM. Let A be a separating uniform algebra on I such that there exists an f in A which is locally 1-1, then A = C(I).

THEOREM. Let A be a separating uniform algebra on I generated by two functions f and g such that there is a compact totally disconnected subset E of I such that

- (i) $f \mid E$ is constant, and
- (ii) f separates every pair of points of I not both of which are in E. Then A = C(I).

The proofs use the notion of analytic structure in a maximal ideal space. J. Wermer first obtained results along these lines and further contributions were made by E. Bishop and H. Royden and then by G. Stolzenberg [5] who proved

STOLZENBERG'S THEOREM. Let $X \subseteq \mathbb{C}^n$ be a polynomially convex set. Let $K \subseteq \mathbb{C}^n$ be a finite union of \mathbb{C}^1 -curves. Then $(X \cup K)^{\hat{}} - X \cup K$ is a (possibly empty) pure 1-dimensional analytic subset of $\mathbb{C}^n - X \cup K$. (See [5] for the notation and definitions.)

A further result of Stolzenberg (and Bishop) is that a C^1 arc $K \subseteq C^n$ is polynomially convex and P(K) = C(K). It is well known that no smoothness is needed in C^1 but that in higher dimensions further assumptions are required for the above conclusion. We have

THEOREM. Let $f_1, f_2, \dots, f_n \in C(I)$ separate the points of I and suppose that for $1 \le i \le n-1$, f_i is either \mathfrak{C}^1 or real-valued. Then the separating uniform algebra which f_1, f_2, \dots, f_n generate is C(I).

If all the f_i , $1 \le i \le n-1$ are real valued, this theorem reduces to a result of Rudin [3]; on the other hand, if we consider the image K of I under $t \rightarrow (f_1(t), \dots, f_n(t))$ we obtain a generalization of Stolzenberg's result on smooth arcs.