COMPARISON THEOREMS FOR A GENERALIZED MODULUS OF CONTINUITY

BY JAN BOMAN AND HAROLD S. SHAPIRO

Communicated by Ralph Boas, June 2, 1969

1. Notation and definitions. Let R^m denote real Euclidean *m*-space. We shall employ standard vector notations, whereby $t = (t_1, \dots, t_m)$, $u = (u_1, \dots, u_m)$ denote points of R^m , $tu = \sum_{1}^{m} t_i u_i$ and $|t| = (tt)^{1/2}$. In connection with Fourier transforms $x = (x_1, \dots, x_m)$ denotes a point of a "dual" copy of R^m . $M = M(R^m)$ shall denote the totality of bounded complex-valued Borel measures on R^m , made into a Banach algebra in the usual way, i.e. the "product" of the measures σ , τ is the convolution $\sigma * \tau$ and the norm of a measure is its total variation. ϑ shall denote the Fourier transforms of σ , and $W = W(\hat{R}^m)$ the Banach algebra of Fourier transforms of elements of M. In W the "multiplication" is ordinary point-wise multiplication of functions. W is isometrically isomorphic to M under the map $\sigma \rightarrow \vartheta$.

For $f \in L^p(\mathbb{R}^m)$ with $1 \leq p \leq \infty$ and $\sigma \in M$ we write $f * \sigma$ to denote the function g such that $g(t) = \int f(t-u) d\sigma(u)$. (This is defined for almost all t; moreover $g \in L^p$.) For a > 0 let $\sigma_{(a)}$ denote the measure defined by $\sigma_{(a)}(E) = \sigma(a^{-1}E)$ for all Borel sets E. We have $||\sigma_{(a)}|| = ||\sigma||$. For $f \in L^p$, $\sigma \in M$ and a > 0 let us define

of $j \in L^2$, $v \in M$ and u > v let us define

$$D_{\sigma,p}(f; a) = ||f * \sigma_{(a)}||_p,$$

$$\omega_{\sigma,p}(f; a) = \sup_{\substack{0 < b \leq a}} D_{\sigma,p}(f; b).$$

We shall call $\omega_{\sigma,p}$ (for fixed f, considered as a function of a) the σ, p modulus of f. The reason for the choice of this term is that when m = 1and σ is specialized to be a "dipole measure" with "masses" of +1 at t=0 and -1 at t=1 we obtain the usual L^p modulus of continuity. Various other specializations of σ lead to "moduli" that are of interest in studying the smoothness and approximation properties of functions (see [1], [2]).

We shall say a measure σ satisfies the Tauberian condition if $\vartheta(x)$ does not vanish at all points of any half-ray through the origin, i.e. if given x, |x| = 1 there is a positive number a such that $\vartheta(ax) \neq 0$.

2. The comparison theorems.

THEOREM 1. Suppose $\sigma, \tau \in M(\mathbb{R}^m)$, σ satisfies the Tauberian condition, and there is a function $F \in W$ such that $\hat{\tau}(x) = \hat{\sigma}(x)F(x)$ in some neighborhood of the origin. Then for $f \in L^p$ $(1 \le p \le \infty)$ and a > 0