APPROXIMATING HOMOTOPIES BY ISOTOPIES IN FRÉCHET MANIFOLDS

BY JAMES E. WEST

Communicated by Richard D. Anderson, April 18, 1969

Let M be an F-manifold, that is, a separable, metric manifold modelled on an infinite-dimensional Fréchet space. The question was raised at a problem seminar this January (1969) at Cornell University whether homotopic embeddings of another F-manifold in M are isotopic. In this note the affirmative answer is given and a stronger result established.

Given an open cover \mathfrak{U} of a space X, two maps f and g of a space Y into X are said to be \mathfrak{U} -close provided that for each y in Y there is an element of \mathfrak{U} containing both f(y) and g(y). The two maps are said to be *pseudo-isotopic* provided there is a map $h: Y \times I \to X$ with

$$h(y, 0) = f(y), \qquad h(y, 1) = g(y)$$

and which for each t in (0, 1) is an embedding of $Y \times \{t\}$. The theorem is as follows:

THEOREM. Homotopic maps of a separable metric space into an F-manifold are pseudo-isotopic. If the domain is complete, the pseudo-isotopy may be required to be through closed embeddings. Furthermore, given any open cover \mathfrak{U} of the manifold and any homotopy F between the maps, the pseudo-isotopy may be required to be \mathfrak{U} -close to F.

PROOF. Let X be the separable metric space, M the F-manifold, and f and g the homotopic maps of X into M. By a collection of results, all separable, infinite-dimensional Fréchet spaces are homeomorphic to the countably infinite product s of open intervals (-1, 1). (For a discussion of these results and a bibliography, see the introduction of [3].) Furthermore, a theorem of R. D. Anderson and R. M. Schori [4] asserts that given any open cover \mathfrak{U} of M, there is a homeomorphism $h_{\mathfrak{U}}$ of M onto $M \times s$ so that $p \circ h_{\mathfrak{U}}$ is \mathfrak{U} -close to the identity map, where p is the projection onto M. If $\{s_i\}_{i=1}^{\infty}$ is a countable, indexed family of copies of s, it is easy to see that s', the product of the s_i 's, is homeomorphic to s, so s may be replaced by s'in the above theorem.

For each integer *i* and real number *t* in (-1, 1), let $\psi_{i,i}$: $s_i \rightarrow s_i$ be the map which multiplies in each coordinate by *t*, and let