APPROXIMATING HOMOTOPIES BY ISOTOPIES IN FRECHET MANIFOLDS

BY JAMES E. WEST
Communicated by Richard D. Anderson, April 18, 1969

Let M be an F-manifold, that is, a separable, metric manifold modelled on an infinite-dimensional Fréchet space. The question was raised at a problem seminar this January (1969) at Cornell University whether homotopic embeddings of another F-manifold in M are isotopic. In this note the affirmative answer is given and a stronger result established.

Given an open cover \mathcal{U} of a space X, two maps f and g of a space Y into X are said to be \mathcal{U}-close provided that for each y in Y there is an element of u containing both $f(y)$ and $g(y)$. The two maps are said to be pseudo-isotopic provided there is a map $h: Y \times I \rightarrow X$ with

$$
h(y, 0)=f(y), \quad h(y, 1)=g(y)
$$

and which for each t in $(0,1)$ is an embedding of $Y \times\{t\}$. The theorem is as follows:

Theorem. Homotopic maps of a separable metric space into an F-manifold are pseudo-isotopic. If the domain is complete, the pseudoisotopy may be required to be through closed embeddings. Furthermore, given any open cover \mathcal{U} of the manifold and any homotopy F between the maps, the pseudo-isotopy may be required to be u-close to F.

Proof. Let X be the separable metric space, M the F-manifold, and f and g the homotopic maps of X into M. By a collection of results, all separable, infinite-dimensional Fréchet spaces are homeomorphic to the countably infinite product s of open intervals $(-1,1)$. (For a discussion of these results and a bibliography, see the introduction of [3].) Furthermore, a theorem of R. D. Anderson and R. M. Schori [4] asserts that given any open cover \mathcal{U} of M, there is a homeomorphism $h_{\mathcal{U}}$ of M onto $M \times s$ so that $p \circ h_{\mathcal{U}}$ is \mathcal{U}-close to the identity map, where p is the projection onto M. If $\left\{s_{i}\right\}_{i=1}^{\infty}$ is a countable, indexed family of copies of s, it is easy to see that s^{\prime}, the product of the s_{i} 's, is homeomorphic to s, so s may be replaced by s^{\prime} in the above theorem.

For each integer i and real number t in ($-1,1$), let $\psi_{i, t}: s_{i} \rightarrow s_{i}$ be the map which multiplies in each coordinate by t, and let

