THE ACTION OF A REAL SEMISIMPLE GROUP ON A COMPLEX FLAG MANIFOLD. I: ORBIT STRUCTURE AND HOLOMORPHIC ARC COMPONENTS¹

BY JOSEPH A. WOLF

Table of Contents

1. Introduction	1121
Chapter I. Decomposition of a complex flag manifold into real group orbits	1128
2. Basic facts on the orbit structure	1129
3. The closed orbit	1134
4. Open orbits: construction, covering and counting	1140
5. Open orbits: coset space structure and holomorphic functions	1145
6. Open orbits: invariant measure	114 9
7. Integrable orbits	1154
Chapter II. Decomposition of a real group orbit into complex analytic pieces.	1160
8. Holomorphic arc components	1161
9. Global conditions for the components of an orbit	1178
Chapter III. Hermitian symmetric spaces	1195
components	1197
11. Hermitian symmetric spaces: compact subvarieties and Siegel domain	
realizations	1208
References	1236

1. Introduction. This paper describes a topic that is of some interest in Lie groups and in differential and algebraic geometry. The topic shows good promise of being the "correct" context for explicit realization of those series of irreducible unitary representations of semisimple Lie groups that come into the Plancherel formula, so it probably is also of interest in harmonic analysis. We start with an example.

Let X be the Riemann sphere, viewed as $\mathbb{C} \cup \{\infty\}$ via stereographic projection. Then the group G of all holomorphic automorphisms of X consists of the linear fractional transformations

$$\pm \begin{pmatrix} a & c \\ b & d \end{pmatrix} : z \to \frac{az+b}{cz+d}, \qquad \det \begin{pmatrix} a & c \\ b & d \end{pmatrix} = 1;$$

Detailed version of an address delivered at the Riverside meeting of the American Mathematical Society on November 16, 1968, by invitation of the Committee to Select Hour Speakers for Far Western Sectional Meetings; received by the editors May 21, 1969.

¹ Research partially supported by N.S.F. Grants GP-2439, GP-5798 and GP-8008, and by an Alfred P. Sloan Research Fellowship.