ON INTEGRAL REPRESENTATIONS

BY ANDREAS DRESS
Communicated by Hyman Bass, April 1, 1969

Let G be a finite group and p a prime. G is called cyclic $\bmod p$ if there exists a normal p-subgroup $N \unlhd G$ such that G / N is cyclic.

Let R be a commutative ring with $1 \in R$. Write $\mathscr{C}_{R}(G)$ for the set of subgroups $U \leqq G$, which are cyclic $\bmod p$ for some appropriate prime $p(=p(U))$ with $p R \neq R$.

An $R G$-module M is a finitely generated R-module, on which G acts from the left by R-automorphisms. If $U \leqq G$ we write $\left.M\right|_{U}$ for the $R U$-module, one gets by restricting the action of G on the R module M to U.

If N is an $R U$-module, we write $N^{U \rightarrow G}$ for the induced $R G$-module $R G \otimes_{R U} N$.

Two $R G$-modules M, N are called weakly isomorphic, if there exists an $R G$-module L and a natural number k, such that $k \cdot M \oplus L$ $\cong k \cdot N \oplus L(k \cdot M$ short for $M \oplus \cdots \oplus M, k$ times $)$, we write then $M \simeq N$.

Remark. If the Krull-Schmidt-Theorem holds for $R G$-modules, we have

$$
M \simeq N \Leftrightarrow M \cong N
$$

Theorem 1. Let M, N be two $R G$-modules. If $\left.\left.M\right|_{U} \simeq N\right|_{U}$ for all $U \in \mathfrak{C}_{R}(G)$, then $M \simeq N$. Moreover there exist for any $U \in \mathfrak{C}_{R}(G)$ two R-free $R G$-modules $M(U), N(U)$ with $\left.\left.M(U)\right|_{v} \cong N(U)\right|_{v}$ for all $V \leqq G$, which do not contain any conjugate of U, but $\left.\left.M(U)\right|_{U \nsim} N(U)\right|_{U}$.

One can get an even more precise statement by using Grothendieckrings: Let $X(G, R)$ be the Grothendieck-ring of $R G$-modules with respect to split-exact sequences, i.e. $X(G, R)$ is an as additive group isomorphic to the free abelian group, generated by the isomorphism classes of $R G$-modules modulo the subgroup generated by all expressions of the form $M-M_{1}-M_{2}$ with $M \cong M_{1} \oplus M_{2}$-and the multiplication in $X(G, R)$ is given by the tensor-product \otimes_{R} of $R G$-modules. Write $X_{Q}(G, R)$ for $\mathcal{Q} \otimes X(G, R)$. Obviously $M \simeq N$ if and only if M and N represent the same element in $X_{Q}(G, R)$.
$X(\cdot, R)$ and $X_{Q}(\cdot, R)$ are obviously contravariant functors from the category of groups into the category of commutative rings. Especially for $U \leqq G$ one has restriction homomorphisms res $\left.\right|_{v}: X(G, R)$ $\rightarrow X(U, R), X_{8}(G, R) \rightarrow X_{8}(U, R)$ and Theorem 1 reads now

