A STURM THEOREM FOR STRONGLY ELLIPTIC SYSTEMS AND APPLICATIONS

BY KURT KREITH

Communicated by M. H. Protter, April 30, 1969

A recent announcement in this Bulletin [1] deals with Sturm comparison theorems for elliptic equations and systems of ordinary differential equations based on a generalization of the Picone identity [2, p. 228]: if $v(x) \neq 0$, then

(1)
$$\frac{d}{dx} \left[\frac{u}{v} (au'v - guv') \right] = u(au')' - \frac{u^2}{v} (gv')' + (a - g)u'^2 + g \left(u' - \frac{u}{v} v' \right)^2.$$

The purpose of this note is to present a generalization of (1) to strongly elliptic systems and to describe some of its consequences.

Let $A_{ij}(x)$, $G_{ij}(x)$, C(x), and H(x) denote real symmetric $n \times n$ matrices whose components are defined in a smooth, bounded closed domain \overline{D} in R_m and which satisfy $G_{ij} = G_{ji}$, $A_{ij} = A_{ji}$ for $i, j = 1, \dots, m$. The components of A_{ij} and G_{ij} are to be of class C^2 in \overline{D} while the components of C and C are continuous. Let C be a C matrix of class C which is nonsingular in \overline{D} and is "prepared" in the sense that it satisfies

(2)
$$V^* \sum_{j=1}^m G_{ij} \frac{\partial V}{\partial x_j} \text{ is symmetric for } i = 1, \dots, m,$$

and let U(x) be a $n \times 1$ matrix of class C^2 . Then (1) has the following generalization:

(3)
$$\sum_{i} \frac{\partial}{\partial x_{i}} \left[U^{*} \sum_{j} A_{ij} \frac{\partial U}{\partial x_{j}} - U^{*} \sum_{j} G_{ij} \frac{\partial V}{\partial x_{j}} V^{-1} U \right]$$

$$= U^{*} \sum_{i,j} \frac{\partial}{\partial x_{i}} \left(A_{ij} \frac{\partial U}{\partial x_{i}} \right) - U^{*} \sum_{i,j} \frac{\partial}{\partial x_{i}} \left(G_{ij} \frac{\partial V}{\partial x_{j}} \right) V^{-1} U$$

$$+ \sum_{i,j} \frac{\partial U^{*}}{\partial x_{i}} \left(A_{ij} - G_{ij} \right) \frac{\partial U}{\partial x_{j}}$$

$$+ \sum_{i,j} \left[\frac{\partial U}{\partial x_{i}} - \frac{\partial V}{\partial x_{i}} V^{-1} U \right]^{*} G_{ij} \left[\frac{\partial U}{\partial x_{j}} - \frac{\partial V}{\partial x_{j}} V^{-1} U \right].$$