AN ALGEBRAIC DUALIZATION OF FUNDAMENTAL GROUPS

BY KUO-TSAI CHEN1

Communicated by Saunders MacLane, March 17, 1969

This note presents a construction of a Hopf algebra $\pi^1(A)$ for a given augmented commutative algebra A equipped with a derivation. Such a Hopf algebra may be taken as a dualized algebraic analogy of a fundamental group.

1. The construction of $\pi^1(A)$ is motivated by dualizing the fundamental group $\pi_1(X)$ of a differentiable manifold X with a base point x_0 . Let A be the R-algebra of C^{∞} functions on X equipped with the derivation d, which is the usual differentiation from A into the A-module $M = \Omega A$ of C^{∞} 1-forms on X. Recall that the shuffle algebra Sh(M) consists of the R-module of the tensor algebra $T_R(M)$ and the shuffle multiplication o. We make Sh(M) a Hopf R-algebra with the comultiplication $f: Sh(M) \rightarrow Sh(M) \otimes Sh(M)$ given by

$$w_1 \otimes \cdots \otimes w_r \mapsto \sum_{0 \le i \le r} (w_1 \otimes \cdots \otimes w_i) \otimes (w_{i+1} \otimes \cdots \otimes w_r)$$

 $\forall w_1, \dots, w_r \in M$. Moreover the Hopf algebra Sh(M) possesses an antipode (or conjugation) j.

Denote by G the monoid of piecewise smooth loops of X with the base point x_0 under the equivalence relation of reparametrization. The monoid algebra RG is a Hopf algebra whose comultiplication Δ is given by $\Delta \alpha = \alpha \otimes \alpha$, $\forall \alpha \in G$.

Given a loop α : $[0, 1] \rightarrow X$, let $\int_{\alpha} w_1$ be the usual integral, and define, for r > 1, iterated path integrals

$$\int_{\alpha} w_1 \cdot \cdot \cdot w_r = \int_0^1 \left(\int_{\alpha \mid [0,t]} w_1 \cdot \cdot \cdot w_{r-1} \right) w_r(\alpha(t), \dot{\alpha}(t)) dt.$$

Then there is a pairing $Sh(M) \times RG \rightarrow R$ such that

$$\langle w_1 \otimes \cdots \otimes w_r, \alpha \rangle = \int_{\alpha} w_1 \cdots w_r.$$

¹ Work supported in part by the National Science Foundation under Grant NSF-GP-8500.