COMMUTING VECTORFIELDS ON OPEN MANIFOLDS¹

BY J. WOLFGANG SMITH

Communicated by Norman Steenrod, March 24, 1969

Let M be an open orientable differentiable *n*-manifold. More precisely, we will take M and vectorfields over M to be of class C^{∞} . A nonzero vectorfield X on M will be called *nonrecurrent* if the 1-dimensional foliation associated with X is regular (see [4, Chapter I]) and admits no compact leaves. The notation $H^{p}(M; Z) = Q$ shall mean that the *p*-dimensional singular integral cohomology of M is trivial or admits no torsion of order 2, depending on whether p is even or odd, respectively.

THEOREM 1. Let X be a nonrecurrent vectorfield on M and let $A \subset M$ be relatively compact. When $H^{n-1}(M; Z) = Q$ there exists a vectorfield Y on A such that X, Y are linearly independent and commute.

THEOREM 2. When $H^{n-1}(M; Z) = Q$ every relatively compact subset of M submerges in the plane.

For n > 4 Theorem 2 is implied by a result of I. M. James and E. Thomas (quoted as Theorem 8.6 in [5]). Moreover, we note that the cohomological triviality condition is crucial to both Theorems 1 and 2. A very simple example shows this in the case of Theorem 1: Let M be Euclidean 3-space with a point 0 removed and let $X = \partial/\partial r$, where r denotes distance to 0. Let S denote the unit sphere centered at 0 and let $\pi: M \rightarrow S$ denote radial projection. There exist relatively compact subsets $A \subset M$ such that $\pi(A) = S$. A vectorfield Y on A which commutes with X induces then a vectorfield \overline{Y} on S such that \overline{Y} pulls back to Y under $d\pi$. Moreover, if (X, Y) are linearly independent, \overline{Y} must be nonzero, showing that the conclusion of Theorem 1 does not hold in this case. It is also possible to display examples of open orientable C^{∞}-manifolds M with relatively compact $A \subset M$ which do not submerge in the plane. We may take M to be the punctured real projective space of dimension 5, for instance. It is known [5, p. 201] that this space does not submerge in the plane. But obviously M admits relatively compact subsets A which are in fact diffeomorphic to M.

In this note we shall derive Theorems 1 and 2 from results established in [6]. First a few definitions: If F is a regular orientable p-

¹ Research supported in part by National Science Foundation Grant GP-6648.