ANALYTIC SHEAVES OF LOCAL COHOMOLOGY

BY YUM-TONG SIU

Communicated by Armand Borel, April 18, 1969

Suppose \mathfrak{F} is a coherent analytic sheaf on a complex analytic space X. Denote by $S_k(\mathfrak{F})$ the analytic subvariety $\{x \in X | \operatorname{codh} \mathfrak{F}_x \leq k\}$. For any open subset D of X, denote by $\overline{S}_k(\mathfrak{F} | D)$ the topological closure of $S_k(\mathfrak{F} | D)$ in X. If V is an analytic subvariety of X, denote by $\mathfrak{SC}_V^k(\mathfrak{F})$ the sheaf defined by the presheaf $U \mapsto H_V^k(U, \mathfrak{F})$, where $H_V^k(U, \mathfrak{F})$ is the k-dimensional cohomology group of U with coefficients in \mathfrak{F} and supports in V. If $\phi: X \to Y$ is a holomorphic map, denote by $\phi_k(\mathfrak{F})$ the kth direct image of \mathfrak{F} under ϕ . If X, \mathfrak{F} , and V are complex algebraic instead of analytic, $\mathfrak{SC}_V^k(\mathfrak{F})$ has the same meaning and \mathfrak{F}^h denotes the coherent analytic sheaf canonically associated with \mathfrak{F} .

Our results are as follows:

THEOREM A. Suppose V is an analytic subvariety of a complex analytic space (X, \mathfrak{K}) , q is a nonnegative integer, and \mathfrak{F} is a coherent analytic sheaf on X. Let $\theta: X - V \rightarrow X$ be the inclusion map. Then the following three statements are equivalent:

(i) $\theta_0(\mathfrak{F} | X - V), \dots, \theta_q(\mathfrak{F} | X - V)$ (or equivalently $\mathfrak{K}^0_V(\mathfrak{F}), \dots, \mathfrak{SC}^{q+1}_V(\mathfrak{F})$) are coherent on X.

(ii) For every $x \in V$, $\theta_0(\mathfrak{F} | X - V)_x$, \cdots , $\theta_q(\mathfrak{F} | X - V)_x$ (or equivalently $\mathfrak{SC}_V^0(\mathfrak{F})_x$, \cdots , $\mathfrak{SC}_V^{q+1}(\mathfrak{F})_x$) are finitely generated over \mathfrak{SC}_x .

(iii) dim $V \cap \overline{S}_{k+q+1}(\mathfrak{F} | X - V) < k \text{ for every } k \ge 0.$

THEOREM B. Suppose V is an algebraic subvariety of a complex algebraic space X, q is a nonnegative integer, and \mathfrak{F} is a coherent algebraic sheaf on X. Then $\mathfrak{K}^0_V(\mathfrak{F}), \dots, \mathfrak{K}^{q+1}_V(\mathfrak{F})$ are coherent algebraic sheaves on X if and only if $\mathfrak{SC}^0_V(\mathfrak{F}^h), \dots, \mathfrak{K}^{q+1}_V(\mathfrak{F}^h)$ are coherent analytic sheaves on X. If so, the canonical homomorphisms $\mathfrak{K}^k_V(\mathfrak{F})^h \to \mathfrak{K}^k_V(\mathfrak{F}^h)$ are isomorphisms for $0 \leq k \leq q+1$.

In the theory of extending coherent analytic sheaves, the main problem is to answer the following question: Suppose \mathcal{F} is a coherent analytic sheaf on X - V, where V is an analytic subvariety of a complex analytic space X. Let $\theta: X - V \rightarrow X$ be the inclusion map. When is $\theta_0(\mathcal{F})$ coherent? This question has been answered in various ways in [1] through [10]. Theorem A gives a criterion for the coherence of $\theta_q(\mathcal{F})$ after a coherent analytic extension has been found. This criterion given in Theorem A sharpens a result of Trautmann [11]. Theorem B answers in the affirmative a question raised by Serre [2, pp. 373-374].