ON SUMMABILITY FIELDS OF CONSERVATIVE OPERATORS

BY H. I. BROWN, 1 J. P. CRAWFORD AND H. H. STRATTON 2

Communicated by John W. Green, February 4, 1969

Let B[c] denote the Banach algebra of all bounded linear operators on c, the set of convergent sequences. By a conservative operator we mean a member of B[c]. If $T \in B[c]$ and if there exists an infinite matrix $A = (a_{nk})$ such that Tx = Ax for each $x \in c$, then T is called a conservative matrix. (By Tx = Ax we mean $(Tx)_n = (Ax)_n \equiv \sum_k a_{nk}x_k$ for each $n \in I^+$, the set of positive integers.) Let Γ denote the subalgebra of B[c] of all conservative matrices. If $T \in \Gamma$, its summability field, denoted by c_T , is taken to be the set $\{x \in s: Tx \in c\}$, where s denotes the set of all sequences. This raises the following question: How can one define the summability field c_T for an arbitrary T in B[c]? In other words, which sequences should one distinguish as being the set that a conservative operator sums?

One viewpoint is to consider how T acts on c_0 , the maximal subspace of c consisting of those sequences which converge to 0. The restriction of T to c_0 is always representable by a matrix. In other words, if T' denotes the restriction of T to c_0 , then there is an infinite matrix B so that T'x = Bx for each $x \in c_0$. Surely, the summability field of T' is the set $c_B = \{x \in s : Bx \in c\}$. We now note that if T is a conservative matrix, say A, then A also represents the restriction of T to c_0 , i.e. A = B. Thus, it seems reasonable to require that $c_T \supseteq c_B$ for any conservative operator T, where B is the matrix representing the restriction of T to c_0 . Since the unit sequence $e = (1, 1, 1, \cdots)$ need not belong to c_B , even though Te always belongs to c, we cannot, in general, take $c_T = c_B$. However, since e is the only basis element of e that e might not sum, we propose that e be defined as

$$c_T = c_B \oplus e$$
,

where \oplus denotes the linear span of the sets c_B and e. The purpose then of this announcement is to report how the properties of c_T defined above for $T \in B[c]$ compare with the well-known properties of c_T for $T \in \Gamma$.

¹ Research supported in part by NSF Grant GP-8199.

² Research supported in part by NSF Grant GP-8502.