THREE-MANIFOLDS WITH FUNDAMENTAL GROUP A FREE PRODUCT

BY WILLIAM JACO
Communicated by William Browder, April 7, 1969

1. Introduction. The purpose of this paper is to announce some results concerning the structure of a compact 3 -manifold M (possibly with boundary) where $\pi_{1}(M)$ is a free product. Related questions for M closed have been considered in [1], [2], [4], [6], [8].

We use the term map to mean continuous function. If M is a manifold, we use $\operatorname{Bd} M$ and Int M to stand for the boundary and interior of M, respectively. The disk D is said to be properly embedded in the 3-manifold M if

$$
D \cap \operatorname{Bd} M=\operatorname{Bd} D
$$

The compact 3-manifold H_{n} is called a handlebody of genus n if H_{n} is the regular neighborhood of a finite connected graph having Euler characteristic $1-n$.

The combinatorial terminology is consistent with that of [9]. The terms in group theory may be found in [3]. Furthermore, all maps and spaces are assumed to be in the PL category.

2. Bounded Kneser Conjecture.

Theorem 2.1. Let M denote a compact 3-manifold with nonvoid boundary where $\pi_{1}(M) \approx A * B$, a free product. Then there is a compact 3-manifold M^{\prime} with nonvoid boundary so that
(i) M^{\prime} has the same homotopy type as M, and
(ii) there is a disk D^{\prime} properly embedded in M^{\prime} where $M^{\prime}-D^{\prime}$ consists of two components M_{1} and M_{2} with $\pi_{1}\left(M_{1}\right) \approx A$ and $\pi_{1}\left(M_{2}\right) \approx B$.

Outline of proof. Let K_{A} and K_{B} denote CW-complexes with $\pi_{1}\left(K_{G}\right) \approx G$ and $\pi_{n}\left(K_{G}\right)=0, n \geqq 2, G=A, B$. Let p denote a point not in $K_{A} \cup K_{B}$. Define \bar{K}_{A} and \bar{K}_{B} as the mapping cylinders of maps from p into K_{A} and K_{B}, respectively. Let K denote the CW-complex obtained by identifying the copy of p in \bar{K}_{A} with the copy of p in \bar{K}_{B}. It follows that $\pi_{1}(K) \approx A * B$ and $\pi_{n}(K)=0, n \geqq 2$ (see [1, p. 669]).

There is a simplicial map f of M into K (K may be chosen so that any finite collection of cells in K has a simplicial subdivision) so that f_{*} is an isomorphism of $\pi_{1}(M)$ onto $\pi_{1}(K)$.

Lemma A. Let M, K, f, p be as above. There is a map $g: M \rightarrow K$ so that
(i) g is homotopic to f relative to a base point of $\pi_{1}(M)$, and

