ON RELATIVE GROTHENDIECK RINGS

BY ANDREAS DRESS

Communicated by Hyman Bass, April 21, 1969

Let K be a field of characteristic $p(\neq 0)$, to exclude trivial cases) and let G be a finite goup. A KG-module M is a finite dimensional K-vector space, on which G acts K-linearly from the left.

The Green ring a(G) of G(w.r.t. K) is the free abelian group, spanned by the isomorphism classes of indecomposable KG-modules, with the multiplication induced from the tensor product \bigoplus_{K} of KG-modules (see [4]).

If $U \leq G$ one has a restriction map $a(G) \rightarrow a(U)$, induced from restricting the action of G on a KG-module M to U, thus getting a KU-module $M|_U$. Let \mathfrak{U} be a family of subgroups of G. An exact sequence

$$E: \mathbf{0} \to M' \to M \to M'' \to \mathbf{0}$$

is said to be U-split, if

$$E|_{U}: 0 \to M'|_{U} \to M|_{U} \to M''|_{U} \to 0$$

is a split exact sequence of KU-modules for any $U \in \mathfrak{U}$.

For any \mathbb{I} -split exact sequence E of KG-modules define $\chi_E = M - M' - M''$ to be its Euler characteristic in a(G). Write $i(G, \mathbb{I})$ for the linear span of the elements $\chi_E \in a(G)$, where E runs through all \mathbb{I} -split exact sequences of KG-modules. $i(G, \mathbb{I})$ is an ideal in a(G) and $a(G, \mathbb{I}) = a(G)/i(G, \mathbb{I})$ the Grothendieck ring of G relative to \mathbb{I} (see [1], [6]).

LEMMA 1. Let \mathfrak{U}_1 , \mathfrak{U}_2 be two families of subgroups of G. Then the multiplication map $a(G) \times a(G) \rightarrow a(G)$ sends $i(G, \mathfrak{U}_1) \times i(G, \mathfrak{U}_2)$ into $i(G, \mathfrak{U}_1 \cup \mathfrak{U}_2)$.

PROOF. If $E_i: 0 \to M_i' \to M_i \to M_i'' \to 0$ is exact and \mathfrak{U}_i -split, then the tensor product of these two complexes E_1 , E_2 is exact and $\mathfrak{U}_1 \cup \mathfrak{U}_2$ -split, therefore $\chi_{E_i \otimes E_2} = \chi_{E_i} \cdot \chi_{E_2} \in i(G, \mathfrak{U}_1 \cup \mathfrak{U}_2)$.

An KG-module M is \mathfrak{U} -projective, if M is a direct summand in $\bigoplus_{v \in \mathfrak{U}} (M|_v)^{v \to \sigma}$ (see [3]), where for a KU-module N we write $N^{v \to \sigma}$ for the induced KG-module $KG \otimes_{KV} N$.

Write $k(G, \mathbb{U})$ for the linear span of the \mathbb{U} -projective modules in a(G). The canonical epimorphism $a(G) \rightarrow a(G, \mathbb{U})$ induces a map $\kappa: k(G, \mathbb{U}) \rightarrow a(G, \mathbb{U})$, which has also been called the Cartan map (see [1], [6], [7]).