CHARACTERISTIC CLASSES-OLD AND NEW ${ }^{1,2}$

BY FRANKLIN P. PETERSON

1. Definition of sphere bundles. Let M^{n} be an n-dimensional, C^{∞}-manifold. Define $T(M)$ to be all vectors tangent to M of unit length. Define $p: T(M) \rightarrow M$ by p (vector) = initial point of the vector. Then p is a continuous function with $p^{-1}(m)$ homeomorphic to S^{n-1} if $m \in M .(T(M), p, M)$ is an example of an ($n-1$)-sphere bundle.

Let me now abstract some of the properties of this example and define an ($n-1$)-sphere bundle. An ($n-1$)-sphere bundle ξ is a triple (E, p, X), where $p: E \rightarrow X$ is a continuous function, X has a covering by neighborhoods $\left\{V_{\alpha}\right\}$ such that $h_{\alpha}: p^{-1}\left(V_{\alpha}\right) \rightarrow V_{\alpha} \times S^{n-1}$, where h is a homeomorphism, $h_{\alpha}(e)=\left(p(e), S_{\alpha}(e)\right)$. That is, we can give coordinates to $p^{-1}\left(V_{\alpha}\right)$ using V_{α} and S^{n-1}. Furthermore, there is a condition on changing coordinates; namely, if $e \in p^{-1}\left(V_{\alpha} \cap V_{\beta}\right)$, then $h_{\alpha}(e)=\left(p(e), S_{\alpha}(e)\right)$ and $h_{\beta}(e)=\left(p(e), S_{\beta}(e)\right)$ and we obtain a function $S_{\beta}^{\alpha}: S^{n-1} \rightarrow S^{n-1}$ given by $S_{\beta}^{\alpha}\left(S_{\alpha}(e)\right)=S_{\beta}(e)$, defined for each $p(e) \in V_{\alpha} \cap V_{\beta}$. We demand that $S_{\beta}^{\alpha} \in O(n)$, the orthogonal group of homeomorphisms of S^{n-1}. Finally, S_{β}^{α} depends on $p(e)$ and this dependence must be continuous.

Two ($n-1$)-sphere bundles ξ and η over X are called equivalent if there is a homeomorphism $F: E_{\xi} \rightarrow E_{\eta}$ such that

$$
\begin{gathered}
E_{\xi} \xrightarrow{F} E_{\eta} \\
p \searrow \swarrow p \\
X
\end{gathered}
$$

commutes and such that $F \mid p^{-1}(x) \in O(n)$ for all coordinates on $p^{-1}(x)$.
A very important example of an ($n-1$) -sphere bundle is the following one. Let $\mathrm{BO}(n)=$ the Grassmann space of all n-planes through the origin in R^{∞}. Let $\mathrm{EO}(n)$ be the set of pairs, an element of $\mathrm{BO}(n)$ and a unit vector in that n-plane. Let $p: \mathrm{EO}(n) \rightarrow \mathrm{BO}(n)$ be the first element of the pair. The importance of this example is shown by the following classification theorem.

[^0]
[^0]: ${ }^{1}$ An address delivered before the New York meeting of the Society by invitation of the Committee to Select Hour Speakers, April 13, 1968; received by the editors April 21, 1969.
 ${ }^{2}$ In order not to obscure the structure of the subject, I have left out a number of technicalities; in fact some of the statements may be incorrect as stated.

