CHARACTERISTIC CLASSES-OLD AND NEW^{1,2}

BY FRANKLIN P. PETERSON

1. Definition of sphere bundles. Let M^n be an *n*-dimensional, C^{∞} -manifold. Define T(M) to be all vectors tangent to M of unit length. Define $p: T(M) \rightarrow M$ by p(vector) = initial point of the vector. Then p is a continuous function with $p^{-1}(m)$ homeomorphic to S^{n-1} if $m \in M$. (T(M), p, M) is an example of an (n-1)-sphere bundle.

Let me now abstract some of the properties of this example and define an (n-1)-sphere bundle. An (n-1)-sphere bundle ξ is a triple (E, p, X), where $p: E \to X$ is a continuous function, X has a covering by neighborhoods $\{V_{\alpha}\}$ such that $h_{\alpha}: p^{-1}(V_{\alpha}) \to V_{\alpha} \times S^{n-1}$, where his a homeomorphism, $h_{\alpha}(e) = (p(e), S_{\alpha}(e))$. That is, we can give coordinates to $p^{-1}(V_{\alpha})$ using V_{α} and S^{n-1} . Furthermore, there is a condition on changing coordinates; namely, if $e \in p^{-1}(V_{\alpha} \cap V_{\beta})$, then $h_{\alpha}(e) = (p(e), S_{\alpha}(e))$ and $h_{\beta}(e) = (p(e), S_{\beta}(e))$ and we obtain a function $S_{\beta}^{\alpha}: S^{n-1} \to S^{n-1}$ given by $S_{\beta}^{\alpha}(S_{\alpha}(e)) = S_{\beta}(e)$, defined for each $p(e) \in V_{\alpha} \cap V_{\beta}$. We demand that $S_{\beta}^{\alpha} \in O(n)$, the orthogonal group of homeomorphisms of S^{n-1} . Finally, S_{β}^{α} depends on p(e) and this dependence must be continuous.

Two (n-1)-sphere bundles ξ and η over X are called equivalent if there is a homeomorphism $F: E_{\xi} \to E_{\eta}$ such that

$$E_{\xi} \xrightarrow{F} E_{\eta}$$

$$p \searrow \swarrow p$$

$$X$$

commutes and such that $F|p^{-1}(x) \in O(n)$ for all coordinates on $p^{-1}(x)$.

A very important example of an (n-1)-sphere bundle is the following one. Let BO(n) = the Grassmann space of all *n*-planes through the origin in \mathbb{R}^{∞} . Let EO(n) be the set of pairs, an element of BO(n)and a unit vector in that *n*-plane. Let $p: EO(n) \rightarrow BO(n)$ be the first element of the pair. The importance of this example is shown by the following classification theorem.

¹ An address delivered before the New York meeting of the Society by invitation of the Committee to Select Hour Speakers, April 13, 1968; received by the editors April 21, 1969.

² In order not to obscure the structure of the subject, I have left out a number of technicalities; in fact some of the statements may be incorrect as stated.