A NOTE ON FUNCTORS Ext OVER THE RING Z^1

BY KEEAN LEE

Communicated by Saunders MacLane, December 11, 1968

Let A and B be modules over the ring Z of all integers. In this paper, we shall define a new homomorphism

$$\Gamma: B \otimes_{\mathbb{Z}} \operatorname{Hom}_{\mathbb{Z}}(A, Q/\mathbb{Z}) \to \operatorname{Ext}_{\mathbb{Z}}^{1}(A, B)$$

by $\Gamma(b \otimes h) = bE_0 h$, for each $b \otimes h \in B \otimes_Z \operatorname{Hom}_Z(A, Q/Z)$ and check the properties of Γ , where $E_0: 0 \to Z \to Q \to Q/Z \to 0$ is the familiar exact sequence and Q is the field of all rational numbers.

For convenience, in sequel we shall use \otimes , Hom and Ext for \otimes_Z , Hom_z and Ext¹_Z, respectively, and A, B as Z-modules.

The idea of this paper was obtained from a suggestion of Professor S. MacLane. I would like to express my gratitude to him for kind help and guidance.

The detailed definition of Γ is described by the diagram with each commutative square

for each $b \otimes h \in B \otimes \text{Hom}(A, Q/Z)$, where $b \in B$ is a homomorphism from Z to B such that b(1) = b.

By the standard methods as in [3] we know that for b_i (i=0, 1, 2)in B and h_i (i=0, 1, 2) in Hom(A, Q/Z) $(b_1+b_2)E_0h_0=b_1E_0h_0+b_2E_0h_0$, $b_0E_0(h_1+h_2)=b_0E_0h_1+b_0E_0h_2$. Furthermore, for each $f: A_2 \rightarrow A_1$ and $g: B_1 \rightarrow B_2$, where A_i (i=1, 2) and B_i (i=1, 2) are Z-modules, we get the Z-homomorphisms

$$f_{\mathbf{H}}^{*}: \operatorname{Hom}(A_{1}, Q/Z) \to \operatorname{Hom}(A_{2}, Q/Z), \qquad f_{\mathbf{E}}^{*}: \operatorname{Ext}(A_{1}, B) \to \operatorname{Ext}(A_{2}, B)$$
$$g_{\mathbf{E}}^{*}: \operatorname{Ext}(A, B_{1}) \to \operatorname{Ext}(A, B_{2})$$

and in this case we also know that for each $b \otimes h_1 \in B \otimes Hom(A_1, Q/Z)$ and $b_1 \otimes h \in B_1 \otimes Hom(A, Q/Z)$

¹ This research supported in part by the Office of Naval Research.