# A NOTE ON FUNCTORS Ext OVER THE RING $Z^{1}$ 

By Keean lee<br>Communicated by Saunders MacLane, December 11, 1968

Let $A$ and $B$ be modules over the ring $Z$ of all integers. In this paper, we shall define a new homomorphism

$$
\Gamma: B \otimes_{Z} \operatorname{Hom}_{Z}(A, Q / Z) \rightarrow \operatorname{Ext}_{Z}^{1}(A, B)
$$

by $\Gamma(b \otimes h)=b E_{0} h$, for each $b \otimes h \in B \otimes_{Z} \operatorname{Hom}_{Z}(A, Q / Z)$ and check the properties of $\Gamma$, where $E_{0}: 0 \rightarrow Z \rightarrow Q \rightarrow Q / Z \rightarrow 0$ is the familiar exact sequence and $Q$ is the field of all rational numbers.

For convenience, in sequel we shall use $\otimes$, Hom and Ext for $\otimes_{z}$, $\mathrm{Hom}_{z}$ and $\mathrm{Ext}_{Z}^{1}$, respectively, and $A, B$ as $Z$-modules.

The idea of this paper was obtained from a suggestion of Professor S. MacLane. I would like to express my gratitude to him for kind help and guidance.

The detailed definition of $\Gamma$ is described by the diagram with each commutative square

for each $b \otimes h \in B \otimes \operatorname{Hom}(A, Q / Z)$, where $b \in B$ is a homomorphism from $Z$ to $B$ such that $b(1)=b$.

By the standard methods as in [3] we know that for $b_{i}(i=0,1,2)$ in $B$ and $h_{i}(i=0,1,2)$ in $\operatorname{Hom}(A, Q / Z)\left(b_{1}+b_{2}\right) E_{0} h_{0}=b_{1} E_{0} h_{0}+b_{2} E_{0} h_{0}$, $b_{0} E_{0}\left(h_{1}+h_{2}\right)=b_{0} E_{0} h_{1}+b_{0} E_{0} h_{2}$. Furthermore, for each $f: A_{2} \rightarrow A_{1}$ and $g: B_{1} \rightarrow B_{2}$, where $A_{i}(i=1,2)$ and $B_{i}(i=1,2)$ are $Z$-modules, we get the $Z$-homomorphisms
$f_{H}^{*}: \operatorname{Hom}\left(A_{1}, Q / Z\right) \rightarrow \operatorname{Hom}\left(A_{2}, Q / Z\right), \quad f_{E}^{*}: \operatorname{Ext}\left(A_{1}, B\right) \rightarrow \operatorname{Ext}\left(A_{2}, B\right)$

$$
g_{E}^{*}: \operatorname{Ext}\left(A, B_{1}\right) \rightarrow \operatorname{Ext}\left(A, B_{2}\right)
$$

and in this case we also know that for each $b \otimes h_{1} \in B \otimes \operatorname{Hom}\left(A_{1}, Q / Z\right)$ and $b_{1} \otimes h \in B_{1} \otimes \operatorname{Hom}(A, Q / Z)$

[^0]
[^0]:    ${ }^{1}$ This research supported in part by the Office of Naval Research.

