ON SINGULAR INTEGRALS

BY N. M. RIVIÈRE¹

Communicated by Gian-Carlo Rota, March 5, 1969

The note is divided into three sections. The first section is devoted to singular kernels in \mathbb{R}^n . Most of the results of the section remain valid after some modifications, if we replace \mathbb{R}^n by a locally compact group and the Lebesgue measure by the Haar measure of the group; the second section deals with those extensions.

In the third section we apply the results of the first section to obtain L^p estimates for kernels whose homogeneity is given over a one parameter group. These kernels have been first considered by M. de Guzman [2]; particular cases of these kernels are those studied by A. P. Calderón and A. Zygmund in [1]; and by E. B. Fabes and N. Rivière in [3].

1. Singular kernels. Let $\{U_{\alpha}, \alpha > 0\}$ be a family of open subsets of \mathbb{R}^n , satisfying:

(a) $0 \in U_{\alpha}$; for $\alpha < \beta$, $U_{\alpha} \subset U_{\beta}$; $\bigcap_{\alpha} U_{\alpha} = \{0\}$, the closure of U_{α} compact.

(b) There exists $\phi(\alpha)$ continuously mapping R_+ onto R_+ such that

$$U_{\alpha} - U_{\alpha} \subset U_{\phi(\alpha)} \text{ and } m(U_{\phi(\alpha)}) \leq Am(U_{\alpha})$$
$$U_{\alpha} - U_{\alpha} = \{z; z = x - y, x \in U_{\alpha}, y \in U_{\alpha}\}.$$

(Clearly $\alpha < \phi(\alpha)$), $m(\cdot)$ denotes the Lebesgue measure.

(c) The function $f(\alpha) = m(U_{\alpha})$ is left continuous and $f(\alpha) \to \infty$ as $\alpha \to \infty$.

We shall say that the operator T defined over a class of measurable functions is sublinear if

$$|T(f+g)| \leq |T(f)| + |T(g)|,$$

$$L^{p}(\mathbb{R}^{n}) = \left\{ f; ||f||_{p} = \left(\int_{\mathbb{R}^{n}} |f(x)|^{p} dx \right)^{1/p} < \infty \right\}.$$

THEOREM 1 (WEAK TYPE). Let $\{U_{\alpha}\}$ be a family as above, T a sublinear operator defined in $L^{1}(\mathbb{R}^{n}) \oplus L^{p}(\mathbb{R}^{n})$ satisfying:

(i) For $f \in L^p(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, $|Tf(x)| \leq |T_1f(x)| + |T_2f(x)|$ where $m\{x; |T_1f(x)| > t\} \leq (c/t^p) \int_{\mathbb{R}^n} |f|^p dx$ and $||T_2f||_{L^{\infty}} \leq ||f||_{L^{\infty}}$. (ii) If $f \in L^1(\mathbb{R}^n)$ with support contained in $x + U_{\alpha}$, and if

¹ Research partially supported by NSF GP-8834.