A NOTE ON SLIT MAPPINGS

BY DOV AHARONOV

Communicated by Prof. Wolfgang H. Fuchs, February 24, 1969

1. Introduction. Recently the unitary properties of Grunsky's matrix have been studied by several authors. Milin [5] was apparently the first to observe these properties, and Pederson [6], unaware of Milin's work, rediscovered them independently later.

Let $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ be a regular univalent function in the unit circle. The function

$$\log \frac{f(z) - f(\zeta)}{z - \zeta} = \sum_{n,k=0}^{\infty} d_{nk} z^n \zeta^k$$

is then regular in |z| < 1, $|\zeta| < 1$.

Grunsky's matrix $B = (b_{nk})$, $b_{nk} = (nk)^{1/2}d_{nk}$, $n, k = 1, 2, \cdots$ plays an important role in the theory of univalent functions; for example, simple proofs of the Bieberbach conjecture for n=4 were arrived at through its properties [2], [3].

If $1/f(z) = 1/z + c_0 + c_1 z + \cdots$ maps |z| < 1 onto a domain *D* such that the area (in the Lebesgue sense) of the complementary of *D* is zero—then Grunsky's matrix is unitary [5, Theorem 1], [6, Theorem 2.2]. As Milin pointed out, the area of the complementary of *D* is zero if and only if $\sum_{n=1}^{\infty} n |c_n|^2 = 1$. Following Pederson, these functions f(z) will be referred as "slit mappings."

2. Properties of slit mappings. We now prove the following

THEOREM. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is a slit mapping then

$$\frac{1}{f(z)}=\frac{1}{z}+c_0+c_1z+\cdots$$

either is of the form $1/z+c_0+c_1z$, $|c_1|=1$, or there are infinitely many nonvanishing coefficients c_k .

PROOF. The above theorem may also be formulated in the following way:

If f(z) is a slit mapping such that

(1)
$$\frac{1}{f(z)} = \frac{1}{z} + c_0 + c_1 z + \cdots + c_n z^n, \quad c_n \neq 0,$$

then n = 1 and $|c_1| = 1$.