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1. Introduction. Recently the unitary properties of Grunsky's 
matrix have been studied by several authors. Milin [5] was appar
ently the first to observe these properties, and Pederson [6], unaware 
of Milin's work, rediscovered them independently later. 

Let f(z) = z + ]C*°-2 a*z* b e a r egular univalent function in the unit 
circle. The function 

log = ] £ ànkz
nÇh 

Z — f n.fc-0 

is then regular in \z\ < 1 , |f| < 1 . 
Grunsky's matrix J3 = (&n*), bnk = (nk)ll2dnk, n, fe = l, 2, • • • plays 

an important role in the theory of univalent functions; for example, 
simple proofs of the Bieberbach conjecture for w = 4 were arrived a t 
through its properties [2], [3]. 

If l/f(z) = l/z+Co+Ciz+ • • • maps \z\ < 1 onto a domain D such 
tha t the area (in the Lebesgue sense) of the complementary of D is 
zero—then Grunsky's matrix is unitary [5, Theorem l ] , [6, Theorem 
2.2]. As Milin pointed out, the area of the complementary of D is 
zero if and only if 2 " - i n\ cn\ 2 = 1. Following Pederson, these func
tions ƒ(z) will be referred as "slit mappings." 

2. Properties of slit mappings. We now prove the following 

THEOREM. Iff(z) = 2 + X X 2 a>nZn is a slit mapping then 

1 1 
— = r- Co + cxz + • • • 
ƒ(«) 2 

either is of the form 1/z+Co+CiZ, \ci\ = 1 , or there are infinitely many 
nonvanishing coefficients ck. 

PROOF. The above theorem may also be formulated in the following 
way: 

Iff(z) is a slit mapping such that 

1 1 
(1) — = h co + ciz + • • • + cnz

n
y cn 9^ 0, 

ƒ(*) 2 
thenn = l and \ci\ = 1 . 
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