ON SIMULTANEOUS APPROXIMATION AND INTERPOLATION WHICH PRESERVES THE NORM

BY FRANK DEUTSCH¹ AND PETER D. MORRIS¹

Communicated by Avner Friedman, February 14, 1969

In [6] H. Yamabe established the following "simultaneous approximation and interpolation" theorem, which generalized a result of Walsh [4, p. 310] (cf. also [1], [3] for further generalizations), and is related to a theorem of Helly in the theory of moments (cf. e.g. [2, pp. 86-87]).

THEOREM (YAMABE). Let M be a dense convex subset of the real normed linear space X, and let $x_1^*, \dots, x_n^* \in X^*$. Then for each $x \in X$ and each $\epsilon > 0$, there exists a $y \in M$ such that $||x-y|| < \epsilon$ and $x_i^*(y) = x_i^*(x)$ $(i=1, \dots, n)$.

Wolibner [5], in essence, proved that Yamabe's theorem could be sharpened in the particular case when X = C([a, b]), $M = \mathcal{O} =$ "the polynomials," and the x_i^* are "point evaluations." Indeed, from the results of [5] there can readily be deduced the following

THEOREM (WOLIBNER). Let $a \leq t_1 < \cdots < t_n \leq b$ and let \mathcal{O} be the set of polynomials. Then for each $x \in C([a, b])$ and each $\epsilon > 0$, there exists a $p \in \mathcal{O}$ such that $||x-p|| < \epsilon$, $p(t_i) = x(t_i)$ $(i = 1, \cdots, n)$, and ||p|| = ||x||.

Motivated by Wolibner's theorem, we consider the following more general problem. Let M be a dense subspace of the real normed linear space X, and let $\{x_1^*, \dots, x_n^*\}$ be a finite subset of the dual space X^* . The triple $(X, M, \{x_1^*, \dots, x_n^*\})$ will be said to have *property* SAIN (simultaneous approximation and interpolation which is norm-preserving) provided that the following condition is satisfied:

For each $x \in X$ and each $\epsilon > 0$ there exists a $y \in M$ such that $||x-y|| < \epsilon$, $x_i^*(y) = x_i^*(x)$ $(i = 1, \dots, n)$, and ||y|| = ||x||.

In this note we shall outline some of the main results we have obtained regarding property SAIN. Detailed proofs and related matter will appear elsewhere.

THEOREM 1. Let M be a dense subspace of the Hilbert space X and let $x_1^*, \dots, x_n^* \in X^*$. Then $(X, M, \{x_1^*, \dots, x_n^*\})$ has property SAIN if and only if each x_i^* attains its norm on the unit ball in M.

¹ Supported by grants from the National Science Foundation.