ON SIMULTANEOUS APPROXIMATION AND INTERPOLATION WHICH PRESERVES THE NORM

BY FRANK DEUTSCH ${ }^{1}$ AND PETER D. MORRIS ${ }^{1}$

Communicated by Avner Friedman, February 14, 1969

In [6] H. Yamabe established the following "simultaneous approximation and interpolation" theorem, which generalized a result of Walsh [4, p. 310] (cf. also [1], [3] for further generalizations), and is related to a theorem of Helly in the theory of moments (cf. e.g. [2, pp. 86-87]).

Theorem (Yamabe). Let M be a dense convex subset of the real normed linear space X, and let $x_{1}^{*}, \cdots, x_{n}^{*} \in X^{*}$. Then for each $x \in X$ and each $\epsilon>0$, there exists a $y \in M$ such that $\|x-y\|<\epsilon$ and $x_{i}^{*}(y)$ $=x_{i}^{*}(x)(i=1, \cdots, n)$.

Wolibner [5], in essence, proved that Yamabe's theorem could be sharpened in the particular case when $X=C([a, b]), M=\mathcal{P}=$ "the polynomials," and the x_{i}^{*} are "point evaluations." Indeed, from the results of [5] there can readily be deduced the following

Theorem (Wolibner). Let $a \leqq t_{1}<\cdots<t_{n} \leqq b$ and let \odot be the set of polynomials. Then for each $x \in C([a, b])$ and each $\epsilon>0$, there exists a $p \in \mathcal{P}$ such that $\|x-p\|<\epsilon, p\left(t_{i}\right)=x\left(t_{i}\right)(i=1, \cdots, n)$, and $\|p\|=\|x\|$.

Motivated by Wolibner's theorem, we consider the following more general problem. Let M be a dense subspace of the real normed linear space X, and let $\left\{x_{1}^{*}, \cdots, x_{n}^{*}\right\}$ be a finite subset of the dual space X^{*}. The triple ($X, M,\left\{x_{1}^{*}, \cdots, x_{n}^{*}\right\}$) will be said to have property SAIN (simultaneous approximation and interpolation which is norm-preserving) provided that the following condition is satisfied:

For each $x \in X$ and each $\epsilon>0$ there exists a $y \in M$ such that $\|x-y\|$ $<\epsilon, x_{i}^{*}(y)=x_{i}^{*}(x)(i=1, \cdots, n)$, and $\|y\|=\|x\|$.
In this note we shall outline some of the main results we have obtained regarding property SAIN. Detailed proofs and related matter will appear elsewhere.

Theorem 1. Let M be a dense subspace of the Hilbert space X and let $x_{1}^{*}, \cdots, x_{n}^{*} \in X^{*}$. Then $\left(X, M,\left\{x_{1}^{*}, \cdots, x_{n}^{*}\right\}\right)$ has property SAIN if and only if each x_{i}^{*} attains its norm on the unit ball in M.

[^0]
[^0]: ${ }^{1}$ Supported by grants from the National Science Foundation.

