A LOCAL SPECTRAL THEORY FOR OPERATORS. II

BY J. G. STAMPFLI1

Communicated by Henry Helson, November 22, 1968

I. Introduction. Let T be an operator on a Banach space B. Let $\sigma(T)$, the spectrum of T, lie on a line, a circle, or, more generally, a smooth curve. If the resolvent $R_z(T) = (T-zI)^{-1}$ satisfies a growth condition with respect to $\sigma(T)$, it is possible, in many cases, to develop an invariant subspace decomposition for T. We mention explicitly the work of Bartle [1], Godement [4], Leaf [6], Lorch [7], Schwartz [13], Wermer [19], and Wolf [20]. Since, in the references cited, none of the subspaces is necessarily complemented by an invariant subspace, one can not expect this invariant subspace decomposition to generate a countably additive resolution of the identity. Such a spectral resolution is precisely the achievement of the Dunford theory [3], but there it was necessary to assume a second condition in order to obtain it. This condition (Dunford Boundedness) is not easy to verify in practice.

In this note, we will study several situations in Hilbert space, where a strong growth condition on the resolvent is sufficient to guarantee a countably additive resolution of the identity, i.e., the operator turns out to be similar to a normal operator. The results in §3 generalize, and are dependent on, some recent work of Gokhberg and Krein. We will only sketch proofs. Complete details will appear in [16] and elsewhere.

From now on, the underlying space is always a Hilbert space. All operators are bounded. By a smooth Jordan curve, we mean a Jordan curve of class C^2 (in the complex plane).

II. In this section we study conditions on the resolvent which insure normality.

LEMMA 1. Let $||(T-\lambda)^{-1}|| \le 1/d$ where $0 < d < |\lambda|$. Then

$$\left\| \left(T^{-1} - \frac{\bar{\lambda}}{\mid \lambda \mid^2 - d^2} \right)^{-1} \right\| \leq \frac{\mid \lambda \mid^2 - d^2}{d} \cdot$$

THEOREM 1. Let U be an open set and let $\sigma(T) \cap U$ lie in the smooth Jordan curve C. Let $||R_{\lambda}(T)|| \leq 1/\text{dist } [\lambda, C]$ for $\lambda \in U$. Then $T = T_1 \oplus T_2$ where T_1 is normal, $\sigma(T_1) = \text{closure } [\sigma(T) \cap U]$ and $\sigma(T_2) \subset \sigma(T) \cap U'$.

¹ The author gratefully acknowledges the support of the National Science Foundation.