ON SUBALGEBRAS OF C*-ALGEBRAS

BY WILLIAM B. ARVESON¹

Communicated by Murray Gerstenhaber, January 14, 1969

In this note we announce some new methods and results in the theory of nonnormal Hilbert space operators and nonselfadjoint operator algebras. A main difficulty in the subject has been the apparent absence of relations between, say, a nonselfadjoint algebra of operators and its generated C^* -algebra. For example, given full information about the norm-closed algebra P(T) generated by all polynomials in a given (nonnormal) operator T, what can one say about the C^* -algebra $C^*(T)$ generated by T and the identity? While one cannot expect much of an answer in general, we will describe here a class of operators and operator algebras for which these relations are as simple as one could hope for.

All C^* -algebras are assumed to contain an identity (written as e), L(H) denotes the algebra of all bounded operators on a Hilbert space H, and $C^*(S)$ stands for the C^* -algebra generated by S and the identity where S is either an operator or a subset of a C^* -algebra. An operator is irreducible if it commutes with no nontrivial projections.

1. An extension theorem. Let S be a linear subspace of a C^* algebra B, such that S contains the identity of B. A linear map ϕ of S into another C*-algebra is *positive* if $\phi(x) \ge 0$ for every positive element x of S (note, however, that S may contain no positive elements other than scalars). A familiar theorem of M. Krein implies that if $S = S^*$, then every scalar-valued positive linear map of S has a positive extension to B. We first describe a generalization of Krein's theorem to operator-valued maps which is basic for virtually all of the sequel. If M_n is the algebra of all complex $n \times n$ matrices, then $B \otimes M_n$ is the *-algebra of all $n \times n$ matrices over B. There is a unique C*-algebra norm on $B \otimes M_n$, and $S \otimes M_n$ is a linear subspace of this C^{*}-algebra. A linear map ϕ of S into a C*-algebra B' induces, for every $n \ge 1$, a linear map $\phi_n: S \otimes M_n \rightarrow B' \otimes M_n$ by applying ϕ element by element to each matrix over S. ϕ is completely contractive or completely isometric according as each ϕ_n is contractive $(\|\phi_n\| \leq 1)$ or isometric. ϕ is completely positive if each ϕ_n is a positive linear map.

 $^{^{1}}$ Research supported by NSF grant GP-5585 and the U.S. Army Research Office, Durham.