ON SUBALGEBRAS OF C^{*}-ALGEBRAS

BY WILLIAM B. ARVESON ${ }^{1}$
Communicated by Murray Gerstenhaber, January 14, 1969

In this note we announce some new methods and results in the theory of nonnormal Hilbert space operators and nonselfadjoint operator algebras. A main difficulty in the subject has been the apparent absence of relations between, say, a nonselfadjoint algebra of operators and its generated C^{*}-algebra. For example, given full information about the norm-closed algebra $P(T)$ generated by all polynomials in a given (nonnormal) operator T, what can one say about the C^{*}-algebra $C^{*}(T)$ generated by T and the identity? While one cannot expect much of an answer in general, we will describe here a class of operators and operator algebras for which these relations are as simple as one could hope for.

All C^{*}-algebras are assumed to contain an identity (written as e), $L(H)$ denotes the algebra of all bounded operators on a Hilbert space H, and $C^{*}(S)$ stands for the C^{*}-algebra generated by S and the identity where S is either an operator or a subset of a C^{*}-algebra. An operator is irreducible if it commutes with no nontrivial projections.

1. An extension theorem. Let S be a linear subspace of a C^{*} algebra B, such that S contains the identity of B. A linear map ϕ of S into another C^{*}-algebra is positive if $\phi(x) \geqq 0$ for every positive element x of S (note, however, that S may contain no positive elements other than scalars). A familiar theorem of M. Krein implies that if $S=S^{*}$, then every scalar-valued positive linear map of S has a positive extension to B. We first describe a generalization of Krein's theorem to operator-valued maps which is basic for virtually all of the sequel. If M_{n} is the algebra of all complex $n \times n$ matrices, then $B \otimes M_{n}$ is the *-algebra of all $n \times n$ matrices over B. There is a unique C^{*}-algebra norm on $B \otimes M_{n}$, and $S \otimes M_{n}$ is a linear subspace of this C^{*}-algebra. A linear map ϕ of S into a C^{*}-algebra B^{\prime} induces, for every $n \geqq 1$, a linear map $\phi_{n}: S \otimes M_{n} \rightarrow B^{\prime} \otimes M_{n}$ by applying ϕ element by element to each matrix over $S . \phi$ is completely contractive or completely isometric according as each ϕ_{n} is contractive ($\left\|\phi_{n}\right\| \leqq 1$) or isometric. ϕ is completely positive if each ϕ_{n} is a positive linear map.
[^0]
[^0]: ${ }^{1}$ Research supported by NSF grant GP-5585 and the U.S. Army Research Office, Durham.

