ON THE SPACE OF HOMEOMORPHISMS OF E³

BY P. R. HALL

Communicated by Raoul Bott, November 1, 1968

Introduction. Hamstrom [4] has shown that the space $\mathfrak{K}(M)$ of homeomorphisms of a compact 3-manifold M with boundary is LC^n for $n=0, 1, 2, \cdots$, where $\mathfrak{K}(M)$ has the compact-open topology. Kister [7] has shown that for a 3-manifold M with boundary, $\mathfrak{K}(M)$ is LC^0 if $\mathfrak{K}(M)$ is topologised by the metric ρ^* given by

$$\rho^*(f, g) = \sup_{x \in M} \rho(f(x), g(x))$$

where ρ is the natural metric for some locally finite triangulation of M. He has also shown [6] that $\mathfrak{K}(E^n)$ is locally contractible in the topology induced in $\mathfrak{K}(E^n)$ by the usual Euclidean metric.

However, if M is not compact, different metrics on M give rise to different topologies on $\mathcal{K}(M)$ in some of which $\mathcal{K}(M)$ is not LC^0 . Fort [5] has shown that if P is the plane then $\mathcal{K}(P)$ is LC^0 if $\mathcal{K}(P)$ has the compact-open topology. In this note we extend his result to E^3 .

Results.

THEOREM. $\mathfrak{K}(E^3)$ with the compact-open topology is LC^n for $n = 0, 1, 2, \cdots$.

PROOF. With the compact-open topology $\mathfrak{W}(E^3)$ is a topological group and we need only prove the assertion that $\mathfrak{W}(E^3)$ is LC^n at the identity *i*.

Let U be a neighbourhood of *i*. Then there exists an open set V of the form $\bigcap_{i=1}^{n} (A_i, V_i)$, where (A_i, V_i) is the set of all elements of $\mathfrak{K}(E^3)$ which map the compact set A_i into the open set V_i , such that $i \in V \subset U$. There exists an $\epsilon > 0$ such that the ϵ -neighbourhood of A_i is contained in V_i , $i=1, 2, \cdots, n$.

There exist geometric balls B_1 and B_2 with $\bigcup_{i=1}^n V_i \subset B_1 \subset \text{Int } B_2$. By Theorem 5.1 of [4] there exists a $\delta > 0$ such that any mapping f of S^m into the space of homeomorphisms of B_1 into B_2 that move no point as much as δ , can be "extended" to a mapping F' of S^m into the space of homeomorphisms of B_2 onto itself which leave Bd B_2 pointwise fixed. This can be done so that each F'(s) is an extension of f(s) and F'(s) moves no point as much as $\epsilon/2$. We can define a mapping $F: S^m \to \mathfrak{K}(E^3)$ by $F(s) | B_2 = F'(s)$ and $F(s) | E^3 - B_2 = \text{id} | E^3 - B_2$.

Using Alexander's Theorem [1] as given in [2] we can define a