A COUNTABILITY CONDITION FOR PRIMARY GROUPS PRESENTED BY RELATIONS OF LENGTH TWO ${ }^{1}$

BY PAUL HILL
Communicated by Dana Scott, October 4, 1968

A subgroup A of the p-primary group G is nice if $p^{\alpha}(G / A)$ $=\left\{p^{\alpha} G, A\right\} / A$ for all ordinals α. We consider the following countability condition: there exists a collection \mathcal{C} of nice subgroups of G such that
(0) $0 \in \mathbb{C}$.
(1) \mathcal{C} is closed with respect to group-theoretic union in G.
(2) If $A \in \mathbb{C}$ and if H is a subgroup of G such that $\{A, H\} / A$ is countable, there exists $B \in \mathbb{C}$ such that $B \supseteq\{A, H\}$ and such that B / A is countable.

The author [1] has referred to this condition as the third axiom of countability and has demonstrated that this is the countability condition-not the first axiom (countability) nor the second axiom (decomposition into a direct sum of countable groups)-which is truly relevant for the proof of Ulm's theorem.

In this note, we outline a short proof of
Theorem. Suppose that G is a p-primary group presented by an arbitrary number of generators $x_{i}(i \in I)$ and relations $R_{m}(m \in M)$. If each relation R_{m} involves at most two generators, then G satisfies the third axiom of countability.

Proof. There is, of course, no loss of generality in assuming that the index sets I and M both contain an element denoted by 0 and that the relation R_{0} is: $x_{0}=0$. By adding repeatedly, if necessary, new generators y_{i} subject to defining relations of the form $p x_{i}=y_{i}$, we may assume that for each $i \neq 0$ in I that there exists a relation R_{m} of the form $p x_{i}=x_{j}$. Since each element of G has order equal to a power of p, we may in fact assume that given any generator $x_{1} \neq x_{0}$ having order p^{n} in G that there exists a finite chain $x_{1}, x_{2}, x_{3}, \cdots, x_{n+1}=x_{0}$ of generators such that $p x_{i}=x_{i+1}$ is one of the given relations. Furthermore, by deleting certain redundancies in both generators and relations we may assume, in the end, that each relation $R_{m}, m \neq 0$, is precisely of the form $p x_{i}=x_{j}$ where $i \neq j$. For a quick verification of this, note that if

$$
\begin{equation*}
r x_{i}=s x_{j} \quad \text { where } i \neq j \quad \text { and } \quad(r, p)=1 \tag{1}
\end{equation*}
$$

${ }^{1}$ The author acknowledges NSF support under Grant GP-8833.

