A COUNTABILITY CONDITION FOR PRIMARY GROUPS PRESENTED BY RELATIONS OF LENGTH TWO¹

BY PAUL HILL

Communicated by Dana Scott, October 4, 1968

A subgroup A of the p-primary group G is nice if $p^{\alpha}(G/A) = \{p^{\alpha}G, A\}/A$ for all ordinals α . We consider the following countability condition: there exists a collection \mathfrak{C} of nice subgroups of G such that

(0) 0∈C.

(1) \mathfrak{C} is closed with respect to group-theoretic union in G.

(2) If $A \in \mathbb{C}$ and if H is a subgroup of G such that $\{A, H\}/A$ is countable, there exists $B \in \mathbb{C}$ such that $B \supseteq \{A, H\}$ and such that B/A is countable.

The author [1] has referred to this condition as the *third axiom* of countability and has demonstrated that this is the countability condition—not the *first axiom* (countability) nor the second axiom (decomposition into a direct sum of countable groups)—which is truly relevant for the proof of Ulm's theorem.

In this note, we outline a short proof of

THEOREM. Suppose that G is a p-primary group presented by an arbitrary number of generators x_i ($i \in I$) and relations $R_m(m \in M)$. If each relation R_m involves at most two generators, then G satisfies the third axiom of countability.

PROOF. There is, of course, no loss of generality in assuming that the index sets I and M both contain an element denoted by 0 and that the relation R_0 is: $x_0=0$. By adding repeatedly, if necessary, new generators y_i subject to defining relations of the form $px_i=y_i$, we may assume that for each $i\neq 0$ in I that there exists a relation R_m of the form $px_i=x_j$. Since each element of G has order equal to a power of p, we may in fact assume that given any generator $x_1\neq x_0$ having order p^n in G that there exists a finite chain $x_1, x_2, x_3, \dots, x_{n+1}=x_0$ of generators such that $px_i=x_{i+1}$ is one of the given relations. Furthermore, by deleting certain redundancies in both generators and relations we may assume, in the end, that each relation $R_m, m\neq 0$, is precisely of the form $px_i=x_j$ where $i\neq j$. For a quick verification of this, note that if

(1) $rx_i = sx_j$ where $i \neq j$ and (r, p) = 1

¹ The author acknowledges NSF support under Grant GP-8833.