TRIANGULATION OF MANIFOLDS. II

BY R. LASHOF AND M. ROTHENBERG1

Communicated by William Browder, January 27, 1968

Main theorems. We will say that a manifold M satisfies condition S, if $\pi_1(M \times T^k)$ and $\pi_1(\partial M \times T^k)$ satisfy the conditions necessary for the splitting theorem to hold [6], [9].

THEOREM 4. Every closed topological manifold M, dim $M \ge 5$, $H^4(M; Z_2) = 0$, and satisfying condition S, admits a PL manifold structure.²

PROOF. By Theorem 3 and addendum to Theorem 2, the tangent bundle of M^n lifts to a PL_n -bundle. By the splitting theorem [6], [9], there is a PL-manifold Q of the same tangential homotopy type as M. As in [5], proof of (c), we may immerse $M_0 = M$ -point in Q, to give M_0 a PL manifold structure. By Lees' Lemma [5], M admits a PL manifold structure.

REMARKS. 1. If we are given a lift of $\tau(M^n)$ to a PL_n-bundle, we may drop the condition $H^4(M; \mathbb{Z}_2) = 0$.

2. If we are given a bundle map of $\tau(M_0)$ into $\tau(Q)$, Q^n a PL manifold, we may drop condition S as well.

THEOREM 5. Let W^n , $n \ge 5$, be a topological h-cobordism between PL manifolds. If $H^3(W; \mathbb{Z}_2) = 0$, then W admits a PL manifold structure with the given structures on the boundary.

PROOF. Say $\partial W = M_1 \cup M_2$. Then we may define inclusions $\iota_1 \colon M_1 \times I \to W$, $\iota_2 \colon M_2 \times I \to W$ using collar neighborhoods. (Take $\iota_1 \mid M_1 \times 0$ = identity and $\iota_2 \mid M_2 \times 1$ = identity.) Also we have retractions $r_1 \colon W \to M_1 \times I$, $r_2 \colon W \to M_2 \times I$, where for example we may take $r_2 \mid M_2 \colon M_2 \to M_2 \times 1$ by the identity, $r_2 \mid M_1 \colon M_1 \to M_2 \times 0$ by a homotopy equivalence, and $r_2 \iota_2 = \text{identity}$. Now these maps are covered by topological bundle maps; $\iota_i^* \colon \tau_1 \oplus 1 \to \tau = \tau(W)$, $\iota_2^* \colon \tau_2 \oplus 1 \to \tau$, and $r_2^* \colon \tau \to \tau_2 \oplus 1$ so that $r_2^* \iota_2^* = \text{identity}$ (since $M_2 \times I$ is a deformation retract of W). Then $r_2^* \iota_1^* \colon \tau_1 \oplus 1 \to \tau_2 \oplus 1$ is a topological bundle map.

¹ Partially supported by an NSF Grant.

³ As first shown by Kirby and Siebenmann (by other methods), condition S may be eliminated. We can do this by applying Theorem 7 below to the normal disk bundle of a compact manifold M (condition 3 is unnecessary since the tangent bundle is trivial) to obtain their result that M is the homotopy type of a finite complex. The splitting theorem then holds with no condition on the fundamental group [9].