APPLICATIONS OF AFFINE ROOT SYSTEMS TO THE THEORY OF SYMMETRIC SPACES¹

BY LAWRENCE CONLON

Communicated by Raoul Bott, November 25, 1968

Introduction. Let $(G; K_1, K_2)$ be a compact symmetric triad in the sense of [3], G simply connected. The natural action of K_1 on G/K_2 is of interest because it is variationally complete [5]. In [3] we introduced certain "affine root systems" in order to describe the orbits of this K_1 -action, and in the present note we wish to announce the classification [4] of these systems and to indicate further applications to the theory of symmetric spaces.

- 1. Preliminaries. Let \mathfrak{g} be a complex semisimple Lie algebra, ν an automorphism of \mathfrak{g} , and set $\mathfrak{g}_{\nu} = \{X \in \mathfrak{g} : \nu(X) = X\}$. The following is due essentially to de Siebenthal [7] (cf. also [4, §7]).
- (1.1) PROPOSITION. If $\mathfrak{h}, \subset \mathfrak{g}$, is a Cartan subalgebra, there is a unique Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ such that $\mathfrak{h}, \subset \mathfrak{h}$. There is a finite family $\mathfrak{a} = \{\zeta \colon \mathfrak{h}, \to \mathbf{C}/i\mathbf{Z}\}$ of affine functionals and an orthogonal direct sum decomposition

$$g = h \oplus \sum g_t, \quad \xi \in a$$

where $\dim(g_i) = 1$ and

$$\nu$$
 o $\exp(\operatorname{ad}(Z)) \mid \mathfrak{g}_{\zeta} = \exp(2\pi \zeta(Z)),$

for all $Z \in \mathfrak{h}$, and $\zeta \in \mathfrak{a}$. $\zeta(0)$ is pure imaginary for all $\zeta \in \mathfrak{a}$.

 $\mathfrak{h}_{r} = V \oplus iV$ where V is the real subspace on which the "linear parts" $\tilde{\omega} = \omega - \omega(0)$ of the elements $\omega \subseteq \mathfrak{a}$ are real. One defines

$$\mathfrak{A} = \{ \tilde{\omega} \mid V - i\omega(0) \colon \omega \in \mathfrak{a} \}$$

interpreted as a set of affine functionals $V \rightarrow R/Z$. This is the system defined by de Siebenthal.

 $g = g_* \oplus ig_*$ where g_* is the compact real form of g. Let s_1 and s_2 be involutive automorphisms of g_* , σ_1 and σ_2 the extensions of these to anti-involutions of g. There correspond symmetric subalgebras \mathfrak{t}_1 , \mathfrak{t}_2 of g_* and noncompact real forms g_1 , g_2 of g.

Let $\mathfrak{m} \subset \mathfrak{g}_*$ be the simultaneous -1 eigenspace of s_1 and s_2 . Set $\nu = \sigma_1 \sigma_2$ and choose \mathfrak{h}_* as in (1.1), but such that $\mathfrak{h}_* \cap (\mathfrak{m} \oplus i\mathfrak{m})$ is maxi-

¹ Research partially supported by NSF GP-6330.