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We present here in general terms the idea of the mean of a function 
relative to a "weight function" w(£, v), special instances and applica­
tions appearing elsewhere [ l ] , [2]. 

1. The weight function. If X~ [h, k] is a real interval, (J, A, y) a 
finite measure space with /JL(I) = 1, and w(%, v) a nonnegative function 
on XXI which, for each v of ƒ, is measurable, and positive a.e. on X, 
then the indefinite integral 

(1) W(x,v)~ f'w&v)di 
J h 

is defined on XXI, and the function 

W(x) = I W(x, v)dii, xE.X 

which we assume to exist, is continuous and strictly increasing on X, 
as is W(xy v) for each v. 

2. The mean of a function. Let x(v) be any ju-integrable function 
on 7 to X for which the integral functional 

°WX = f W(x(v), v)dfi 

exists. Letxu be the essential upper bound of x{v) on / , i.e., the g.l.b. 
of all real x for which /*{*> | x{v)>x} =0 , the essential lower bound 
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