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1. Introduction. Let GF denote the group of all homeomorphisms 
of the topological space F onto itself, and let GF* be similarly defined 
for a space F'. If GF and GF> are topologized under the point open 
topology, and if there is a function from GF onto GF» which is a 
homeomorphism as well as an algebraic isomorphism then Wechsler 
[l ] has determined a sufficient condition for the spaces F and F' to 
be homeomorphic. Thomas [2] has recently generalized Wechsler's 
theorem by weakening this condition on the spaces F and F'. It is the 
purpose here to generalize Wechsler's theorem in a different direction 
by using a group of functions other than a group of homeomorphisms. 

2. Preliminaries. Most of our notation can be found in [l] and [2] ; 
for reference we include the following. The space F is n-homogeneous 
with respect to a group of functions G provided for any pair of proper 
w-tuples (xi, - • • , xn), (yu • • • , yn)> there is a g in G such that 
g(xi) =:y», i = 1, • • • , n. The space F is (^-homogeneous with respect to a 
group of functions G provided it is ^-homogeneous with respect to G 
for each positive integer n. 

Let Gx = {fÇzG:f(x) =#} . Then Gx is a subgroup of G and will be 
called the subgroup of the point x. Furthermore G/Gx will denote the 
set of left cosets, and cosets will be written as fGx. 

We will use the point open topology on G and will consider G/Gx 

to have the topology induced by the natural mapping, that is, 
vx\ G—>G/GX defined by vx(h) =*hGx is to be continuous so that a set U 
is open in G/Gx if and only if v^l{U) is open in G. All spaces are T2. 

Our main theorem is as follows: 

THEOREM 1. Let F be a topological space, and let G denote a group of 
one-to-one functions from F onto itself with respect to which F is ^-homo
geneous, and let F' and G' be similarly defined. Suppose that $ is a 
homeomorphism from G onto G' such that * is an isomorphism. Then 
there is a homeomorphism from F onto F'. 

The proof of the main theorem will be accomplished by showing the 
existence of a sequence of homeomorphisms whose composition will 
then be the desired homeomorphism between F and F'. We prove 
first that G/Gx is homeomorphic to F. We then show that $ induces a 
homeomorphism from G/Gx onto G1/$(GX). It is next shown that the 
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