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It is known that in order to prove the polyhedral Schoenflies con-
jecture in all dimensions, it is enough to show that, if (B4, B?) is
a (4, 3) ball pair, then B* collapses (polyhedrally) to B3 Recently,
using the solution to the polyhedral Poincaré conjecture in high
dimensions, Husch has shown [3] that if (B, BS) is a (7, 6) ball pair,
then B7 collapses to B®. It is tempting to try to prove that B* col-
lapses to B? by invoking the following conjecture.

CoNJECTURE A. If M is a polyhedral manifold, L a submanifold of
M and S(M)\S(L), then M (L. (S(X) denotes the suspension of X
and “\,” denotes a polyhedral collapse.)

If Conjecture A were true we could suspend a (4, 3) ball pair three
times to obtain a (7, 6) ball pair, use Husch’s result, and then apply
Conjecture A three times in order to desuspend the collapse.

In this note we present a counterexample to Conjecture A, and
discuss other conjectures related to the problem of desuspending
collapses.

ExaMmPLE 1. Let M* be a polyhedral 4-manifold, as described in [4]
or [5], with the following properties. (a) M?* is contractible,
(b) m(0M)=#0, (c) M*XI=B5 Consider S(M*) as M*XI together
with a cone on M*X {0} and another cone on M*X {1}. Thus if 2,
and 9; are the vertices of these cones,

S(MY = (M* X 1)U (ox(M* X {0})) U (ox(M* X {1}])).
Now let B?® be a 3-ball in dM*. Since M*X1I is a 5-ball, with B3XI
as a face, there is an elementary collapse

MEX IN (M X {0}) U (M X {1}) U [(0M* —intB?) X I].
Thus there is a collapse

SMHN\ (o * (M*X{0}))\U(or * (M4X {1}))\U((0M*—int B XT).

Now, by collapsing conewise v; * (M4X {i}) to v; * (9 M*—intB?)
X {z'}), for 1=0 and 1, we have S(M*)\\S(@M*—intB?). However,
since m(MM*) =0 and m(@M*—intB%)=0, M*XdM*—intB3, This
provides a counter-example to Conjecture A,

REMARK 1. By taking two copies of the above manifold, M; and

1 This paper was written while the second author was a fellow of the Alfred P.
Sloan Foundation.
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