GENERATING GROUPS OF NILPOTENT VARIETIES

BY L. G. KOVÁCS, M. F. NEWMAN AND P. F. PENTONY

Communicated by Walter Feit, March 21, 1968

Problem 14 of Hanna Neumann's book [3] asks for a proof of a conjecture which is contradicted by the following

THEOREM. If c is an integer greater than 2, then the variety \mathfrak{N}_c of all nilpotent groups of class at most c is generated by its free group $F_{c-1}(\mathfrak{N}_c)$ of rank c-1 but not by its free group $F_{c-2}(\mathfrak{N}_c)$ of rank c-2.

In the terms of [3], this means that for c > 2 one has d(c) = c-1 rather than $d(c) = \lfloor c/2 \rfloor + 1$ as suggested in Problem 14; correspondingly, [3, 35.35] is false for c = 5 and 6. (Professor Neumann has confirmed that her proofs were faulty.)

The theorem was suggested by Graham Higman's approach to nilpotent varieties of class c and prime exponent greater than c, via the representation theory of the general linear groups [1]. In particular, he remarked that each critical group in such a variety can be generated by c-1 elements (if c>2). Since $F_c(\mathfrak{N}_c)$ generates \mathfrak{N}_c (cf. [3, 35.12]) and is residually of prime exponent (cf. Higman [2]), it follows easily that $F_{c-1}(\mathfrak{N}_c)$ generates \mathfrak{N}_c . It is not difficult to use Higman's method for confirming the second half of the theorem as well.

In this note we outline a proof which avoids the conceptual complexity of Higman's approach; the price of this is paid for in length. Unless otherwise specified, our notation and terminology follow Hanna Neumann's book [3].

To prove the first half of the theorem, it is sufficient to find a set of homomorphisms from $F_c(\mathfrak{N}_c)$ to $F_{c-1}(\mathfrak{N}_c)$ whose kernels intersect trivially. Hanna Neumann did just this in the proof of [3, 35.35] for c=4, and the same idea works generally: if $\{a_1, \dots, a_c\}$ is a free generating set for $F_c(\mathfrak{N}_c)$ and $\{b_1, \dots, b_{c-1}\}$ is one for $F_{c-1}(\mathfrak{N}_c)$, then the 2c-1 homomorphisms $\delta_1, \dots, \delta_c, \theta_1, \dots, \theta_{c-1}$ defined by

$$a_j\delta_i = b_j$$
 if $j < i$, and $a_j\theta_i = b_j$ if $j \le i$,
 $a_j\delta_i = 1$ if $j = i$, $a_j\theta_i = b_{j-1}$ if $j > i$
 $a_j\delta_i = b_{j-1}$ if $j > i$

will do. The verification of this makes use of the unique representation of the elements of $F_c(\mathfrak{N}_c)$ in terms of basic commutators in $\{a_1, \dots, a_c\}$ as defined by Martin Ward [4]. The case of odd c is