GENERATING GROUPS OF NILPOTENT VARIETIES

BY L. G. KOVÁCS, M. F. NEWMAN AND P. F. PENTONY

Communicated by Walter Feit, March 21, 1968
Problem 14 of Hanna Neumann's book [3] asks for a proof of a conjecture which is contradicted by the following

Theorem. If c is an integer greater than 2, then the variety \mathfrak{N}_{c} of all nilpotent groups of class at most c is generated by its free group $F_{c-1}\left(\mathfrak{N}_{c}\right)$ of rank c-1 but not by its free group $F_{c-2}\left(\Re_{c}\right)$ of rank $c-2$.

In the terms of [3], this means that for $c>2$ one has $d(c)=c-1$ rather than $d(c)=[c / 2]+1$ as suggested in Problem 14; correspondingly, $[3,35.35]$ is false for $c=5$ and 6 . (Professor Neumann has confirmed that her proofs were faulty.)

The theorem was suggested by Graham Higman's approach to nilpotent varieties of class c and prime exponent greater than c, via the representation theory of the general linear groups [1]. In particular, he remarked that each critical group in such a variety can be generated by $c-1$ elements (if $c>2$). Since $F_{c}\left(\mathfrak{R}_{c}\right)$ generates \mathfrak{N}_{0} (cf. [3, 35.12]) and is residually of prime exponent (cf. Higman [2]), it follows easily that $F_{c-1}\left(\mathfrak{N}_{c}\right)$ generates \mathfrak{N}_{c}. It is not difficult to use Higman's method for confirming the second half of the theorem as well.

In this note we outline a proof which avoids the conceptual complexity of Higman's approach; the price of this is paid for in length. Unless otherwise specified, our notation and terminology follow Hanna Neumann's book [3].

To prove the first half of the theorem, it is sufficient to find a set of homomorphisms from $F_{c}\left(\mathfrak{R}_{c}\right)$ to $F_{c-1}\left(\mathfrak{R}_{c}\right)$ whose kernels intersect trivially. Hanna Neumann did just this in the proof of [3, 35.35] for $c=4$, and the same idea works generally: if $\left\{a_{1}, \cdots, a_{c}\right\}$ is a free generating set for $F_{c}\left(\mathfrak{N}_{c}\right)$ and $\left\{b_{1}, \cdots, b_{c-1}\right\}$ is one for $F_{c-1}\left(\mathfrak{N}_{c}\right)$, then the $2 c-1$ homomorphisms $\delta_{1}, \cdots, \delta_{c}, \theta_{1}, \cdots, \theta_{c-1}$ defined by

$$
\begin{array}{llll}
a_{j} \delta_{i}=b_{j} & \text { if } j<i, \quad \text { and } \quad & a_{j} \theta_{i}=b_{j} & \text { if } j \leqq i, \\
a_{j} \delta_{i}=1 & \text { if } j=i, & & a_{j} \theta_{i}=b_{j-1} \\
a_{j} \delta_{i}=b_{j-1} & \text { if } j>i
\end{array}
$$

will do. The verification of this makes use of the unique representation of the elements of $F_{c}\left(\mathfrak{N}_{c}\right)$ in terms of basic commutators in $\left\{a_{1}, \cdots, a_{0}\right\}$ as defined by Martin Ward [4]. The case of odd c is

