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1. Introduction. The results of this paper grew from an attempt to 
classify the minimal simple groups. For obvious reasons, this paper is 
a natural successor to 0.2 The structure of the proof showed that a 
larger class of groups could be mastered with some further effort. 
An easy corollary classifies the minimal simple groups. 

In a broad way, this paper may be thought of as a successful trans­
lation of the theory of solvable groups to the theory of simple groups. 
By this is meant that a substantial structure is constructed which 
makes it possible to exploit properties of solvable groups to obtain 
delicate information about the structure and embedding of many 
solvable subgroups of the simple group under consideration. In this 
way, routine results about solvable groups acquire great power. 

In somewhat more detail, the arguments go as follows, apart from 
numerous special cases which involve groups of small order: Let ® be 
a finite group. Let So (̂@) be the set of all solvable subgroups of ®. 
Then So/(®) is partially ordered by inclusion and we let 3ES(@) be 
the set of maximal elements of So/(@). Let 2flZ*(®) be the set of all 
elements of So/(®) which are contained in precisely one element of 
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2 0 refers to Solvability of groups of odd order, W. Feit and J. Thompson, Pacific 
J. Math. (3) 13(1963), and Result X of 0 is here referred to as Result O.X. Also, as in 
0, (B) refers to Theorem B of [26]. 
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