RELATED PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS

BY L. R. BRAGG AND J. W. DETTMAN

Communicated by J. B. Diaz, October 18, 1967

1. Introduction. Let $x=\left(x_{1}, \cdots, x_{n}\right)$ and $D=\left(D_{1}, \cdots, D_{n}\right)$ where $D_{i} \phi(x)=\partial \phi(x) / \partial x_{i}$. Let $D^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \cdots D_{n}^{\alpha_{n}}$ and let $P(x, D)$ $=\sum_{\alpha ; 0 \leq|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ where $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and the $a_{\alpha}(x)$ are given functions of x. Finally, let $S(x)=0$ denote a cylindrical surface in (x, t) space and $B(x, D)$ a nontangential boundary operator whose domain is the manifold $S(x)=0$. The smoothness required of $S(x)=0$ will depend upon the operator $B(x, D)$. We will be concerned with the following pair of initial-boundary value problems:

$$
\mathrm{P}_{1}\left\{\begin{array}{l}
\partial u(x, t) / \partial t=P(x, D) u(x, t), \quad t>0 \\
u(x, 0)=\phi(x), \\
B(x, D) u(x, t)=f(x, t), \quad x \in S, t>0
\end{array}\right.
$$

and

$$
\mathrm{P}_{2}\left\{\begin{array}{l}
\partial^{2} v(x, t) / \partial t^{2}=P(x, D) v(x, t), \quad t>0 \\
v(x, 0)=0, \quad v_{t}(x, 0)=\phi(x) \\
B(x, D) v(x, t)=g(x, t), \quad x \in S, t>0
\end{array}\right.
$$

We assume that $B(x, D) \phi(x)$ vanishes on $S(x)=0$ and that $P(x, D) \phi(x)$ is continuous.

The interest in this paper will be in relating the solvability of P_{2} to P_{1} and conversely by means of the Laplace transform and the inverse Laplace transform. The use of the Laplace transform will necessarily impose restrictions on the choices of the functions $f(x, t)$ and $g(x, t)$, but these conditions are satisfied in a wide class of applications. By the symbolism $\mathscr{L}_{s}^{-1}\{\psi(x, s)\}_{s \rightarrow t^{2}}$ we understand the inverse Laplace transform with the variable s in the transform and the variable t^{2} in the inverted function. We then have the following results:

Theorem 1. If P_{1} is solvable with solution $u(x, t)$ and if

$$
\begin{equation*}
g(x, t)=\Gamma(3 / 2) \mathscr{L}_{s}^{-1}\left\{s^{-s / 2} f(x, 1 / 4 s)\right\}_{s \rightarrow t^{2}} \tag{1.1}
\end{equation*}
$$

then P_{2} is also solvable and

$$
\begin{equation*}
v(x, t)=\Gamma(3 / 2) \mathcal{L}_{s}^{-1}\left\{s^{-3 / 2} u(x, 1 / 4 s)\right\}_{s \rightarrow t}{ }^{2} \tag{1.2}
\end{equation*}
$$

provided the inverse Laplace transform exists in (1.1) and (1.2).

