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1. Introduction. Recent attempts (see [ l ] and the references in the 
same article) to extend the Wiener-Hopf technique for functions of a 
single complex variable to those of two or more complex variables 
have relied on a remark of Bochner's [2] that guarantees the required 
decomposition under suitable restrictions. Bochner's remark states 
that : if f(zi, • • • , zn), Zj = Xj+iyj, is analytic in a tube T: yi<Xi<Sit 

yi&(-~°o, oo ), and if f I „ • • • f\ f(zu • • '**n)[Wyi • • • dyn converges 
in T, then there exists in T a decomposition/— ZJu>ifu where each fi is 
analytic and bounded in an octant shaped tube Ti containing the interior 
of T. Moreover, such a decomposition is unique up to additive constants. 
The uniqueness of the decomposition is not verified in [2] but refer
ence is made to H. Bohr's [3] corresponding result for functions of a 
single complex variable. 

I t is here shown that the uniqueness statement is false. However, 
the adjunction of the additional hypothesis that the ƒ»•—»0 when any 
one of the Xj—* <», in the tubes Ti, restores the uniqueness of the de
composition and justifies the use of the result in [2]. 

2. A counter-example. In the decomposition ƒ = X X i ƒ*> h *s a n " 
alytic and bounded in the tube Ti: Xi>yif 3>*£( — °°, °°), i = l , 2, 

• • • , n, and ƒ2 is analytic and bounded in the tube T2: #i<ôi, #/>Yy, 


