2. ——, An invariant formulation of the new maximum-minimum theory of eigenvalues, J. Math. Mech. 16 (1966) 213–218.

3. S. Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill, New York, 1966.

4. I. C. Gohberg and M. G. Krein, Fundamental theorems on deficiency numbers, root numbers, and indices of linear operators, Uspehi Mat. Nauk 12 (1957), 43-188; English transl., Amer. Math. Soc. Transl. (2) 13 (1960), 185-264.

5. W. Stenger, The maximum-minimum principle for the eigenvalues of unbounded operators, Notices Amer. Math. Soc. 13 (1966), 731.

6. ——, On the variational principles for eigenvalues for a class of unbounded operators, J. Math. Mech. 17 (1968), 641–648.

THE AMERICAN UNIVERSITY

ON AN ADDITIVE DECOMPOSITION OF FUNCTIONS OF SEVERAL COMPLEX VARIABLES

BY EDGAR KRAUT, STAVROS BUSENBERG AND WILLIAM HALL

Communicated by Maurice Heins, November 16, 1967

1. Introduction. Recent attempts (see [1] and the references in the same article) to extend the Wiener-Hopf technique for functions of a single complex variable to those of two or more complex variables have relied on a remark of Bochner's [2] that guarantees the required decomposition under suitable restrictions. Bochner's remark states that: if $f(z_1, \dots, z_n), z_j = x_j + iy_j$, is analytic in a tube $T: \gamma_i < x_i < \delta_i$, $y_i \in (-\infty, \infty)$, and if $\int_{-\infty}^{\infty} \cdots \int |f(z_1, \dots, z_n)|^2 dy_1 \cdots dy_n$ converges in T, then there exists in T a decomposition $f = \sum_{i=1}^{2^n} f_i$, where each f_i is analytic and bounded in an octant shaped tube T_i containing the interior of T. Moreover, such a decomposition is unique up to additive constants. The uniqueness of the decomposition is not verified in [2] but reference is made to H. Bohr's [3] corresponding result for functions of a single complex variable.

It is here shown that the uniqueness statement is false. However, the adjunction of the additional hypothesis that the $f_i \rightarrow 0$ when any one of the $x_j \rightarrow \infty$, in the tubes T_i , restores the uniqueness of the decomposition and justifies the use of the result in [2].

2. A counter-example. In the decomposition $f = \sum_{i=1}^{2^n} f_i$, f_1 is analytic and bounded in the tube $T_1: x_i > \gamma_i$, $y_i \in (-\infty, \infty)$, $i = 1, 2, \cdots, n$, and f_2 is analytic and bounded in the tube $T_2: x_1 < \delta_1, x_j > \gamma_j$,