RESTRICTED LIE ALGEBRAS OF BOUNDED TYPE

BY RICHARD D. POLLACK1

Communicated by Charles W. Curtis, October 19, 1967

Introduction. It is known [13] that a Lie algebra over a modular field has indecomposable representations of arbitrarily high dimensionalities. If, however, the Lie algebra and its representations are required to be restricted (see [6, Chapter 5] for definitions), this need no longer be the case.

A restricted Lie algebra for which the degrees of its (restricted) indecomposable representations are bounded by some constant is said to be of *bounded type*; one for which this is not the case is said to be of *unbounded type*.

1. The simple three-dimensional Lie algebra, A_1 . Let A_1 be the split simple three-dimensional Lie algebra over the field K of characteristic p>3. Then A_1 has a basis e, f, h with [e, f]=h, [e, h]=2e, [f, h]=-2f and with p-power mapping given by $e^p=f^p=0$, $h^p=h$. There are p inequivalent irreducible (restricted) modules for A_1 , classified by their highest weight. Let M_{λ} , $0 \le \lambda \le p-1$, be the irreducible A_1 -module with highest weight λ , so that $[M_{\lambda}: K]=\lambda+1$ [5].

Let U be the u-algebra [6] of A_1 and $U = \sum_{j=1}^n \oplus U_j$ its decomposition into its principal indecomposable modules (p.i.m.). Since U is a symmetric algebra [9] each U_j has a unique top and bottom composition factor, these are isomorphic, and each M_{λ} is isomorphic to the top composition factor of some U_j [2].

If M is an A_1 -module, denote by $M \sim M_{\lambda_1}, M_{\lambda_2}, \cdots, M_{\lambda_s}$ the fact that the M_{λ_j} , in the given order, are the composition factors of some composition series for M.

THEOREM 1. Let $U(\lambda)$, $0 \le \lambda \le p-1$, be a p.i.m. of U whose top composition factor is isomorphic to M_{λ} . Then

- (i) $U(p-1) \cong M_{p-1}$ and [U(p-1): K] = p.
- (ii) If $\lambda \neq p-1$, then $U(\lambda) \sim M_{\lambda}$, M_{γ} , M_{γ} , M_{λ} , where $\lambda + \gamma = p-2$, and $[U(\lambda):K] = 2p$.

¹ These results are contained in a dissertation submitted to Yale University in 1967, written under the supervision of Professor G. B. Seligman. The research was supported by National Science Foundation grant no. GP-1813.