GEOMETRIC PROGRAMMING: A UNIFIED DUALITY THEORY FOR QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS AND l_{p}-CONSTRAINED l_{p}-APPROXIMATION PROBLEMS ${ }^{1}$

BY ELMOR L. PETERSON AND J. G. ECKER

Communicated by L. Cesari, August 31, 1967
The duality theory of geometric programming as developed by Duffin, Peterson, and Zener [1] is based on abstract properties shared by certain classical inequalities, such as Cauchy's arithmeticgeometric mean inequality and Hölder's inequality. Inequalities with these abstract properties have been termed "geometric inequalities" ($[1, \mathrm{p} .195]$). We have found a new geometric inequality, which we state below, and have used it to extend the "refined duality theory" of geometric programming developed by Duffin and Peterson ([2] and [1, Chapter VI]). This extended duality theory treats both quadrati-cally-constrained quadratic programs and l_{p}-constrained l_{p}-approximation problems. By a quadratically constrained quadratic program we mean: to minimize a positive semidefinite quadratic function, subject to inequality constraints expressed in terms of the same type of functions. By an l_{p}-constrained l_{p}-approximation problem we mean: to minimize the l_{p} norm of the difference between a fixed vector and a variable linear combination of other fixed vectors, subject to inequality constraints expressed by means of l_{p} norms.

Both the classical unsymmetrical duality theorems for linear programming (Gale, Kuhn and Tucker [3], and Dantzig and Orden [4]) and the unsymmetrical duality theorems for linearly-constrained quadratic programs (Dennis [5], Dorn [6], [7], Wolfe [8], Hanson [9], Mangasarian [10], Huard [11], and Cottle [12]) can be derived from the extended duality theorems that we state below and have proved on the basis of the new geometric inequality.

The new geometric inequality is

$$
\begin{aligned}
& \sum_{1}^{N+1} x_{i} y_{i} \leqq y_{N+1}\left(\sum_{1}^{N}{p_{i}}^{-1}\left|x_{i}-b_{i}\right|^{p_{i}}+\left(x_{N+1}-b_{N+1}\right)\right) \\
& +\sum_{1}^{N}\left(q_{i}^{-1} y_{N+1}^{\left(1-q_{i}\right)}\left|y_{i}\right|^{q_{i}}+b_{i} y_{i}\right)+b_{N+1} y_{N+1}
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Research partially supported by US-Army Research Office Durham, Grant 07701, at the University of Michigan.

