FLATTENING A SUBMANIFOLD IN CODIMENSIONS ONE AND TWO

BY J. C. CANTRELL ${ }^{1}$ AND R. C. LACHER ${ }^{2}$
Communicated by O. G. Harrold, November 3, 1967

Let M and N be manifolds with $M \subset \operatorname{Int} N$, and assume that $M-X$ is locally flat in N, where X is some subset of M. We are interested in finding conditions (intrinsic, placement, dimensional, etc.) which, when placed on X, imply that M is locally flat in N. Extremely useful and satisfying answers are provided by Bryant and Seebeck in [2], assuming that $\operatorname{dim} N-\operatorname{dim} M \geqq 3$. We announce here a method for deducing local versions of Corollary 1.1 of [2] in codimensions one and two.

Definitions. If M is a manifold, a collaring of $\mathrm{Bd} M$ in M is an embedding λ of $\operatorname{Bd} M \times[0, \infty)$ into M such that $\lambda(x, 0)=x$ for each x in $\operatorname{Bd} M$. We use R^{n} to denote euclidean n-space, B^{n} the closed unit ball in R^{n}.

Theorem. For integers $0 \leqq k<m \leqq n$, let D be an m-cell in R^{n} and let E be a k-cell in $\mathrm{Bd} D$. Assume that the following condition is satisfied:

$$
D-E \text { is locally flat in } R^{n}, \quad \text { and } \quad E \text { is locally fat in } \operatorname{Bd} D .
$$

Then $\left(R^{n}, D\right) \approx\left(R^{n}, B^{m}\right)$ if and only if $\lambda(E \times I)$ is locally flat in R^{n} for some collaring λ of $\mathrm{Bd} D$ in D.

The proof of this theorem is similar to the proof of Theorem 4.2 of [7]. Theorem 4.1 of [7] must be used more carefully to replace Corollary 3.2 of [7].

A detailed proof of the above theorem, together with applications and generalizations, will appear elsewhere. We present below the immediate implications of [2]. (Actually, in an earlier paper which is in press, Bryant and Seebeck prove a local form of Corollary 1.1 of [2] which is enough to yield the following applications.)

Remark. There are no dimensional restrictions (other than $0 \leqq k<m \leqq n$) in the above Theorem.

Application 1. Let D be an m-cell in R^{n}, and let E be a k-cell in Bd D. Assume that
$D-E$ and E are locally fat in R^{n}, and E is locally flat in $\operatorname{Bd} D$.
If $k \leqq n-4$ then $\left(R^{n}, D\right) \approx\left(R^{n}, B^{m}\right)$.

[^0]
[^0]: ${ }^{1}$ Supported by the National Science Foundation and a Alfred P. Sloan fellowship.
 ${ }^{2}$ Supported by the National Science Foundation.

