k-MERSIONS OF MANIFOLDS¹

BY SIDNIE DRESHER FEIT

Communicated by G. D. Mostow, September 26, 1967

Let M^n be an *n*-dimensional C^{∞} manifold and W^p be a *p*-dimensional C^{∞} manifold. A C^{∞} mapping $f: M^n \rightarrow W^p$ is called a *k*-mersion if its rank is greater than or equal to *k* everywhere. The set of *k*-mersions, endowed with the C^1 topology, is denoted $R(M^n, W^p; k)$. A *k*-regular homotopy between *k*-mersions *f* and *g* is a continuous mapping $F: I \rightarrow R(M^n, W^p; k)$ such that F(0) = f and f(1) = g.

A k-bundle map, $\psi: TM^n \to TW^p$ between the tangent spaces of M^n and W^p is a continuous fibre preserving mapping such that the restriction of ψ to any fibre is a linear map of rank at least k. The space of k-bundle maps with the compact open topology is denoted $T(M^n, W^p; k)$.

An *n*-mersion is an immersion, and an *n*-regular homotopy is usually called a regular homotopy. In 1958 and 1959, Smale [4], [5] published papers classifying immersions of spheres in Euclidean spaces. Smale proved that if n < p, the regular homotopy classes of immersions of S^n in E^p are in one to one correspondence with the homotopy classes of sections of S^n into the bundle associated with TS^n whose fibre is the Stiefel manifold $V_{p,n}$ of *n* frames in *p*-dimensional Euclidean space. Smale obtained this classification by proving a stronger result, namely, that the map $d: R(S^n, E^p; n) \to T(S^n, E^p; n)$ defined by d(f) = df is a weak homotopy equivalence if n < p. His proof was based on the diagram

(1)

$$R(S^{n}, E^{p}; n) \xrightarrow{d} T(S^{n}, E^{p}; n)$$

$$\downarrow i^{*} \qquad \downarrow j^{*}$$

$$R(D^{n}, E^{p}; n) \xrightarrow{d} T(D^{n}, E^{p}; n)$$

where D^n is identified with a hemisphere of S^n , and i^* and j^* are restriction maps. The main step in the proof consists of showing that i^*

¹ This work was performed in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cornell University, 1967. I wish to thank Professor R. Szczarba of Yale University, under whose direction this work was done.