BERRY-ESSEEN BOUNDS FOR THE MULTI-DIMENSIONAL CENTRAL LIMIT THEOREM ${ }^{1}$

BY R. N. BHAT'ACHARYA

Communicated by P. R. Halmos, September 21, 1967

1. Introduction. Let $\left\{X_{n}\right\}$ be a sequence of independent and identically distributed random variables each with mean zero, variance unity, and finite absolute third moment β_{3}. Let F_{n} denote the distribution function of $\left(X_{1}+\cdots+X_{n}\right) /(n)^{1 / 2}$. Berry [2] and Esseen [4] have proved that
(1) $\sup _{x \in R_{1}}\left|F_{n}(x)-\frac{1}{(2 \pi)^{1 / 2}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y\right| \leqq c \beta_{3} / n^{1 / 2}, \quad n=1,2, \cdots$,
where c is a universal constant. Consider now a sequence $\{X(n)$ $\left.=\left(X_{1}{ }^{(n)}, \cdots, X_{k}^{(n)}\right)\right\}$ of independent and identically distributed random vectors in R_{k} each with mean vector ($0, \cdots, 0$) and covariance matrix I, the $k \times k$ identity matrix. If P_{n} denotes the probability distribution of $\left(X^{(1)}+\cdots+X^{(n)}\right) / n^{1 / 2}$ and Φ is the standard k dimensional normal distribution, then it is well known that P_{n} converges weakly to Φ as $n \rightarrow \infty$. Bergström [1] has extended (1) to this case, assuming finiteness of absolute third moments of the components of $X^{(1)}$. Since weak convergence of a sequence Q_{n} of probability measures to Φ means that $Q_{n}(B) \rightarrow \Phi(B)$ for every Borel set B satisfying $\Phi(\partial B)=0, \partial B$ being the boundary of B, it seems natural to seek bounds of $\left|P_{n}(B)-\Phi(B)\right|$ for such sets B (called Φ-continuity sets). Let Q be a class of Borel sets such that, whatever be the sequence Q_{n} converging weakly to $\Phi, Q_{n}(B) \rightarrow \Phi(B)$ as $n \rightarrow \infty$ uniformly for all $B \in Q$. Such a class is called a Φ-uniformity class. By a theorem of Billingsley and Topsoe [3], a class Q is a Φ-uniformity class if and only if $\sup \left\{\Phi(\partial B)^{\epsilon} ; B \in Q\right\} \downarrow 0$ as $\epsilon \downarrow 0$, where $(\partial B)^{\epsilon}$ is the ϵ-neighborhood of ∂B. This leads one naturally to consider the class $\mathfrak{Q}_{1}\left(d, \epsilon_{0}\right)$ of all Borel sets B for which $\Phi(\partial B)^{\epsilon} \leqq d \epsilon$ for $0<\epsilon<\epsilon_{0}, d$ and ϵ_{0} being any two given positive constants. One may also consider the class $\mathbb{Q}_{1}^{*}\left(d, \epsilon_{0}\right)$, which is the largest translation-invariant subclass of $a_{1}\left(d, \epsilon_{0}\right)$; this means that $B \in \mathbb{Q}_{1}^{*}\left(d, \epsilon_{0}\right)$ if and only if all translates of B belong to $Q_{1}\left(d, \epsilon_{0}\right)$.
[^0]
[^0]: ${ }^{1}$ The research for this work was supported in part by the Army Research Office, Office of Naval Research, and Air Force Office of Scientific Research by Contract No. Nonr-2121(23), NR 343-043.

