BERRY-ESSEEN BOUNDS FOR THE MULTI-DIMENSIONAL CENTRAL LIMIT THEOREM¹

BY R. N. BHATTACHARYA

Communicated by P. R. Halmos, September 21, 1967

1. Introduction. Let $\{X_n\}$ be a sequence of independent and identically distributed random variables each with mean zero, variance unity, and finite absolute third moment β_3 . Let F_n denote the distribution function of $(X_1 + \cdots + X_n)/(n)^{1/2}$. Berry [2] and Esseen [4] have proved that

(1)
$$\sup_{x \in R_1} |F_n(x) - \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^x e^{-y^2/2} dy | \leq c\beta_3/n^{1/2}, \quad n = 1, 2, \cdots,$$

where c is a universal constant. Consider now a sequence $\{X(n)\}$ $=(X_1^{(n)}, \cdots, X_k^{(n)})$ of independent and identically distributed random vectors in R_k each with mean vector $(0, \dots, 0)$ and covariance matrix I, the $k \times k$ identity matrix. If P_n denotes the probability distribution of $(X^{(1)} + \cdots + X^{(n)})/n^{1/2}$ and Φ is the standard kdimensional normal distribution, then it is well known that P_n converges weakly to Φ as $n \to \infty$. Bergström [1] has extended (1) to this case, assuming finiteness of absolute third moments of the components of $X^{(1)}$. Since weak convergence of a sequence Q_n of probability measures to Φ means that $Q_n(B) \rightarrow \Phi(B)$ for every Borel set B satisfying $\Phi(\partial B) = 0$, ∂B being the boundary of B, it seems natural to seek bounds of $|P_n(B) - \Phi(B)|$ for such sets B (called Φ -continuity sets). Let α be a class of Borel sets such that, whatever be the sequence Q_n converging weakly to Φ , $Q_n(B) \rightarrow \Phi(B)$ as $n \rightarrow \infty$ uniformly for all $B \in \alpha$. Such a class is called a Φ -uniformity class. By a theorem of Billingsley and Topsoe [3], a class α is a Φ -uniformity class if and only if $\sup \{ \Phi(\partial B)^{\epsilon}; B \in \mathfrak{a} \} \downarrow 0$ as $\epsilon \downarrow 0$, where $(\partial B)^{\epsilon}$ is the ϵ -neighborhood of ∂B . This leads one naturally to consider the class $\alpha_1(d, \epsilon_0)$ of all Borel sets B for which $\Phi(\partial B)^{\epsilon} \leq d\epsilon$ for $0 < \epsilon < \epsilon_0$, d and ϵ_0 being any two given positive constants. One may also consider the class $\alpha_1^*(d, \epsilon_0)$, which is the largest translation-invariant subclass of $\alpha_1(d, \epsilon_0)$; this means that $B \in \alpha_1^*(d, \epsilon_0)$ if and only if all translates of B belong to $\alpha_1(d, \epsilon_0).$

¹ The research for this work was supported in part by the Army Research Office, Office of Naval Research, and Air Force Office of Scientific Research by Contract No. Nonr-2121(23), NR 343-043.