ON SOME FIXED POINTS THEOREMS IN GENERALIZED COMPLETE METRIC SPACES

BY BEATRIZ MARGOLIS ${ }^{1}$

Communicated by J. B. Diaz, September 21, 1967

In Theorem 2 of $[1]^{2}$ A. F. Monna generalized a result by W. A. J. Luxemburg on fixed points [2], valid for one operator in a generalized complete metric space, to a suitable family of operators; this result was later completed by M. Edelstein [3].

Clearly, when the family reduces to a unique element (i.e. $T_{i} \equiv T$ for all i), one gets Luxemburg's result. But if one considers the family of iterates of $T: T_{i}=T^{i}(i=1,2, \cdots)$, since Hypothesis 1 of Monna's Theorem requires $d\left(T_{i} x, T_{i} y\right) \leqq \rho d(x, y)(i=1,2, \cdots)$ when $d(x, y)$ $\leqq C$, we must have, in particular, $d(T x, T y) \leqq \rho d(x, y)$, and Luxemburg's Theorem applies, providing even with a stronger conclusion than Monna's for this particular situation. In order to include this case as a strict generalization of Luxemburg's result, we relax Hypothesis 1 slightly, thus including also Monna's Theorem, and at the same time we get for the family $\left\{T^{i}\right\}$ a nontrivial result. This last assertion will be clarified with an example. This constitutes $\S 1$ of our paper.

In §2 we give some fixed point results for a family of operators with $\rho=1$.

1. Theorem 1. Let (X, d) be a generalized complete metric space, ${ }^{3}$ and $\left\{T_{i}\right\}_{i=1,2, \ldots}$ a family of self-mappings of X, closed under composition, such that
(1) There exist constants $C>0,0 \leqq \rho<1$, and an integer $m \geqq 1$ such that if $x, y \in X$ and $d(x, y) \leqq C$, then

$$
d\left(T_{m+k} x, T_{m+k} y\right) \leqq \rho d(x, y) ; \quad k=0,1,2, \cdots .
$$

(2) $T_{i}=T_{j}=T_{j} T_{i} ; i, j=1,2, \cdots$.
(3) Let $x_{0} \in X$ be arbitrary, and define $x_{n}=T_{n} x_{n-1}(n=1,2, \cdots)$. Then there exists $N\left(x_{0}\right)$ such that $d\left(T_{n+k} x_{n}, x_{n}\right) \leqq C$, for $n \geqq N$, $k=1,2 \cdots$.

Then, there exists a $\xi \in X$ such that $x_{n} \rightarrow \xi$ and $T_{n} \xi \rightarrow \xi$ as $n \rightarrow \infty$.
Furthermore, (if)

[^0]
[^0]: ${ }^{1}$ Research sponsored by Fundación Bariloche, República Argentina. The author is now at Universidad Nacional de La Plata, República Argentina.
 ${ }^{2}$ Numbers in [] correspond to References.
 ${ }^{8}$ We follow Luxemburg's denomination.

