ON SOME FIXED POINTS THEOREMS IN GENERALIZED COMPLETE METRIC SPACES

BY BEATRIZ MARGOLIS¹

Communicated by J. B. Diaz, September 21, 1967

In Theorem 2 of $[1]^2$ A. F. Monna generalized a result by W. A. J. Luxemburg on fixed points [2], valid for one operator in a generalized complete metric space, to a suitable family of operators; this result was later completed by M. Edelstein [3].

Clearly, when the family reduces to a unique element (i.e. $T_i \equiv T$ for all *i*), one gets Luxemburg's result. But if one considers the family of iterates of $T: T_i = T^i$ $(i=1, 2, \cdots)$, since Hypothesis 1 of Monna's Theorem requires $d(T_ix, T_iy) \leq \rho d(x, y)$ $(i=1, 2, \cdots)$ when $d(x, y) \leq C$, we must have, in particular, $d(Tx, Ty) \leq \rho d(x, y)$, and Luxemburg's Theorem applies, providing even with a stronger conclusion than Monna's for this particular situation. In order to include this case as a strict generalization of Luxemburg's result, we relax Hypothesis 1 slightly, thus including also Monna's Theorem, and at the same time we get for the family $\{T^i\}$ a nontrivial result. This last assertion will be clarified with an example. This constitutes §1 of our paper.

In §2 we give some fixed point results for a family of operators with $\rho = 1$.

1. THEOREM 1. Let (X, d) be a generalized complete metric space,³ and $\{T_i\}_{i=1,2,\cdots}$ a family of self-mappings of X, closed under composition, such that

(1) There exist constants C > 0, $0 \le \rho < 1$, and an integer $m \ge 1$ such that if $x, y \in X$ and $d(x, y) \le C$, then

$$d(T_{m+k}x, T_{m+k}y) \leq \rho d(x, y); \quad k = 0, 1, 2, \cdots$$

(2) $T_i = T_j = T_j T_i; i, j = 1, 2, \cdots$

(3) Let $x_0 \in X$ be arbitrary, and define $x_n = T_n x_{n-1}$ $(n = 1, 2, \dots)$. Then there exists $N(x_0)$ such that $d(T_{n+k}x_n, x_n) \leq C$, for $n \geq N$, $k=1, 2 \cdots$.

Then, there exists a $\xi \in X$ such that $x_n \to \xi$ and $T_n \xi \to \xi$ as $n \to \infty$. Furthermore, (if)

¹ Research sponsored by Fundación Bariloche, República Argentina. The author is now at Universidad Nacional de La Plata, República Argentina.

² Numbers in [] correspond to References.

⁸ We follow Luxemburg's denomination.