THE FOLDED RIBBON THEOREM FOR REGULAR CLOSED CURVES IN THE PLANE

BY GEORGE K. FRANCIS ${ }^{1}$
Communicated by Lamberto Cesari, November 9, 1967

Let S be the oriented circle with base point, E the oriented Euclidian plane, and V the positively oriented two frames in E. Let L be the space of C^{1}-regular immersions $g: S \rightarrow E$ with continuous right transverse field \hat{g}. For $g \in L$, set $\partial g=\left(g, \hat{g}, g^{\prime}\right): S \rightarrow E \times V$. A positive monotone regular homotopy ($=$ monotopy) from loop g_{-1} to g_{+1} is a C^{1} regular homotopy $G:[-1,+1] \times S \rightarrow E$ with positive Jacobian and $\partial G(i, x)=\partial g_{i}(x), i= \pm 1$, where $\partial G=(G, \partial G / \partial t, \partial G / \partial x)$. A negative monotopy G from g_{-1} to g_{+1} is such that $G^{*}(t, x)=G(-t, x)$ is a positive monotopy from g_{+1} to g_{-1}. A monotopy is stronger than a regular homotopy in that the latter requires only that $\partial G / \partial x \neq 0$. The tangent winding number TWN of g in L is the degree of $g^{\prime} /\left|g^{\prime}\right|: S \rightarrow S$. Because degree is a homotopy invariant, regular homotopy preserves the TWN. The converse of this is the Whitney-Graustein Theorem [3]. The TWN actually classifies L in a much stronger fashion.

Theorem. For two regular loops $g_{i}, i= \pm 1$, of like $T W N$, there always is a regular loop g_{0} and two monotopies $H_{i}: g_{i} \sim g_{0}, i= \pm 1$, of like sign equal to sign ($T W N \pm \frac{1}{2}$).

Note that TWN $=0$ belongs to both cases. For TWN $=1$, two concentric circles are monotopic. Not so for two circles whose interiors are disjoint; yet each is monotopic to a circle surrounding them both.

The method of proof is entirely constructive. The normal loops L_{N} have only simple, signed, transverse self-intersections (=nodes). L_{N} is dense and open (=generic) in L under the topology induced by $\|g-h\|=\max |\partial g(x)-\partial h(x)|, x \in S$. (See [3] for details.)

Proposition 1. If $g \in L$ and $\epsilon>0$, there is an $h \in L_{N}$ with $\|g-h\|<\epsilon$ and a monotopy of prescribed sign between them.

The proof of Proposition 1 makes use of a stable condition of "parallelity": min $\operatorname{det}\left(g(x)-h(x), \operatorname{tg}^{\prime}(x)+(1-t) h^{\prime}(x)\right)>0$, over all $x \in S$ and $t \in[0,1]$. The key lemma reads:

Lemma. If w is a continuous, periodic, transverse field along the ordinate in the (t, x)-Cartesian plane, then the map $F(t, x)=(t-z(t), x)$

[^0]
[^0]: ${ }^{1}$ This work comprised part of the author's dissertation written under Professor Charles J. Titus at the University of Michigan, 1967.

