A FATOU-TYPE THEOREM FOR HARMONIC FUNCTIONS ON SYMMETRIC SPACES¹

BY S. HELGASON AND A. KORÁNYI

Communicated by G. D. Mostow, August 31, 1967

- 1. Introduction. The result to be proved in this article is that if u is a bounded harmonic function on a symmetric space X and x_0 any point in X then u has a limit along almost every geodesic in X starting at x_0 (Theorem 2.3). In the case when X is the unit disk with the non-Euclidean metric this result reduces to the classical Fatou theorem (for radial limits). When specialized to this case our proof is quite different from the usual one; in fact it corresponds to transforming the Poisson integral of the unit disk to that of the upper half-plane and using only a homogeneity property of the Poisson kernel. The kernel itself never enters into the proof.
- 2. Harmonic functions on symmetric spaces. Let G be a semisimple connected Lie group with finite center, K a maximal compact subgroup of G and $\mathfrak g$ and $\mathfrak f$ their respective Lie algebras. Let B denote the Killing form of $\mathfrak g$ and $\mathfrak p$ the corresponding orthogonal complement of $\mathfrak f$ in $\mathfrak g$. Let Ad denote the adjoint representation of G. As usual we view $\mathfrak p$ as the tangent space to the symmetric space X = G/K at the origin $o = \{K\}$ and accordingly give X the G-invariant Riemannian structure induced by the restriction of G to G to G denote the corresponding Laplace-Beltrami operator.

Fix a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$ and let M denote the centralizer of \mathfrak{a} in K. If λ is a linear function on \mathfrak{a} and $\lambda \neq 0$ let $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} \mid [H, X] = \lambda(H)X \text{ for all } H \in \mathfrak{a}\}$; λ is called a restricted root if $\mathfrak{g}_{\lambda} \neq 0$. Let \mathfrak{a}' denote the open subset of \mathfrak{a} where all restricted roots are $\neq 0$. Fix a Weyl chamber \mathfrak{a}^+ in \mathfrak{a} , i.e. a connected component of \mathfrak{a}' . A restricted root \mathfrak{a} is called positive (denoted a > 0) if its values on \mathfrak{a}^+ are positive. Let the linear function \mathfrak{p} on \mathfrak{a} be determined by $2\mathfrak{p} = \sum_{a>0} (\dim \mathfrak{g}_a)a$ and denote the subalgebras $\sum_{a>0} \mathfrak{g}_a$ and $\sum_{a>0} \mathfrak{g}_{-a}$ of \mathfrak{g} by \mathfrak{n} and $\overline{\mathfrak{n}}$ respectively. Let N and \overline{N} denote the corresponding analytic subgroups of G.

By a Weyl chamber in $\mathfrak p$ we understand a Weyl chamber in some maximal abelian subspace of $\mathfrak p$. The boundary of X is defined as the set B of all Weyl chambers in the tangent space $\mathfrak p$ to X at o; since this boundary is via the map $kM \to \mathrm{Ad}(k)\mathfrak a^+$ identified with K/M, which by the Iwasawa decomposition G = KAN equals G/MAN, this defi-

¹ This work was supported by the National Science Foundation, GP 7477 and GP 6155.