CONSTRUCTIONS ON LOW-DIMENSIONAL DIFFERENTIABLE MANIFOLDS

BY VALENTIN POÉNARU¹

Communicated by William Browder, May 29, 1967

1. This note contains the statements of three theorems on lowdimensional differentiable manifolds (dimensions 3 and 4). The proofs, which use techniques partly connected to [1], will appear elsewhere.

We denote by $M_n + (\phi_\lambda)$ the manifold obtained by adding the handle of index λ , $D_\lambda \times D_{n-\lambda}$, via the embedding ϕ_λ : $S_{\lambda-1} \times D_{n-\lambda}$ $\rightarrow \partial M_n$, to M_n . More generally, we shall use the following notation: If $P_{n-1} \subset S_{n-1} = \partial D_n$ is a bounded submanifold and ψ : $P_{n-1} \rightarrow M_n$ an embedding, we denote by $M_n + (\psi)$, the space $M_n \cup D_n$, where every $x \in P_{n-1}$ is identified to $\psi(x) \in M_n$. It is understood that, if $\psi(P_{n-1})$ $\subset \partial M_n$, then $M_n + (\psi)$ is a "usual" differentiable manifold, otherwise a "singular" one (see §2).

THEOREM 1. Let M_3 be a compact, differentiable, homotopy 3-disk. Then $M_3 \times I$ is diffeomorphic to D_4 with handles of index 2 and 3 added:

$$M_3 \times I = D_4 + (\phi_2^1) + \cdots + (\phi_2^p) + (\phi_3^1) + \cdots + (\phi_3^p).$$

Hence, one can eliminate the handles of index 1 of $M_3 \times I$ (compare with the similar procedure, in higher dimensions [2]).

In fact we obtain Theorem 1 from the slightly stronger:

THEOREM 1'. If M_3 is a compact, differentiable homotopy 3-disk, there exists an integer $p = p(M_3)$ such that:

$$(M_3 \# (S_2 \times I) \# \cdots \# (S_2 \times I)(p \text{ times})) \times I \\ = D_4 + (\phi_2^1) + \cdots + (\phi_2^p).$$

This together with some immersion theory, implies easily the main result from [1].

The next theorem is the main step in proving Theorem 1'. But in order to state it, we need some preparation.

2. We consider the 3-manifold $T_p = (S_1 \times D_2) \# (S_1 \times D_2) \# \cdots$ # $(S_1 \times D_2)$ (p times) and its double $2T_p = (S_1 \times S_2) \# (S_1 \times S_2)$ # $\cdots \# (S_1 \times S_2)$ (p times). (# means connected sum.) A family of p 2-by-2 disjoint embeddings $\phi_i: S_1 \rightarrow T_p$ $(i=1, \cdots, p)$ is called

¹ This research has been supported by NSF Grant GP-6299.