CON JUGATE LOCI IN GRASSMANN MANIFOLDS

BY YUNG-CHOW WONG
Communicated by S. Smale, September 29, 1967

1. Introduction. In the tangent space M_{x} to a Riemannian manifold M at the point x, a conjugate point v is a point at which the differential of the exponential map $\exp _{x}: M_{x} \rightarrow M$ is singular. In M, a point y is a conjugate point to x if $y=\exp _{x} v$ for some conjugate point v in M_{x}. The conjugate locus in M_{x} is the set of conjugate points in M_{x}, and the conjugate locus in M at x is the set of conjugate points to x.

Though there are a number of general results on the conjugate locus either in M_{x} or in M ([4], [6, p. 59], [11], [12] and [13]), the precise nature of this locus in special Riemannian manifolds seems to be known only in a few cases, such as the sphere, the projective spaces, and some two-dimensional manifolds ([2, pp. 225-226], [9] and [10]). In the present note, we give a complete description of the conjugate locus at a point in the real, complex or quaternionic Grassmann manifolds. Besides being useful and interesting, this information will extend the range of problems recently studied by Klingenberg [8], Allamigeon [1], Green [5] and Warner [12, 13]. The conjugate locus in the tangent space to a Grassmann manifold is more complex and will be the subject of a future note.

In §2, we describe the Schubert varieties of which the conjugate locus in a Grassmann manifold is composed. In §3, we give some results concerning conjugate points in a Grassmann manifold. In §4, we state our main theorem. Details and proof will be omitted. For background information, the reader is referred to the author's paper [14].
2. Some Schubert varieties (cf. [3, Chapter 4] and [7, Chapter 14]). Let F be the field R of real numbers, the field C of complex numbers, or the field H of real quaternions; F^{n+m} an ($n+m$)-dimensional left vector space over F provided with a positive definite hermitian inner product; $G_{n}\left(F^{n+m}\right)$ the Grassmann manifold of n-planes in F^{n+m}.

In F^{n+m}, let P be a fixed p-plane $(1<p<n+m), Z$ a variable n plane, and

$$
\begin{aligned}
V_{l} & =\{Z: \operatorname{dim}(Z \cap P) \geqq l\} \quad(l \geqq 0), \\
W_{l} & =V_{l} \backslash V_{l+1}=\{Z: \operatorname{dim}(Z \cap P)=l\} \quad(l \geqq 0) .
\end{aligned}
$$

