A GAME WITH NO SOLUTION¹

W. F. LUCAS

Communicated by R. Creighton Buck, November 1, 1967

1. Introduction. In 1944 von Neumann and Morgenstern [2] introduced a theory of solutions for *n*-person games in characteristic function form. The main mathematical question concerning their model is whether every game has at least one solution. This announcement describes a ten-person game which has no solution. The essential definitions for an *n*-person game will be reviewed briefly before the particular example is given. The proof that the game has no solution will then be sketched; a detailed proof will be published elsewhere.

2. Definitions. An *n*-person game is a pair (N, v) where $N = \{1, 2, \dots, n\}$ is the set of players and v is a characteristic function on 2^N , i.e., v assigns the real number v(S) to each subset S of N and $v(\phi) = 0$. The set of *imputations* is

$$A = \left\{ x: \sum_{i \in N} x_i = v(N) \text{ and } x_i \ge v(\{i\}) \text{ for all } i \in N \right\}$$

where $x = (x_1, x_2, \dots, x_n)$ is a vector with real components. For any $X \subset A$ and nonempty $S \subset N$, define $\text{Dom}_S X$ to be the set of all $x \in A$ such that there exists a $y \in X$ with $y_i > x_i$ for all $i \in S$ and with $\sum_{i \in S} y_i \leq v(S)$. Let $\text{Dom } X = \bigcup_{S \subset N} \text{Dom}_S X$. Also let $\text{Dom}^{-1} X$ be the set of all $y \in A$ such that there exists $x \in X$ with $x \in \text{Dom} \{y\}$. A subset K of A is a solution if $K \cap \text{Dom } K = \phi$ and $K \cup \text{Dom } K = A$. If $X \subset A$ and $K' \subset X$, then K' is a solution for X if $K' \cap \text{Dom } K' = \phi$ and $K' \cup \text{Dom } K' \supset X$. The core of a game is

$$C = \left\{ x \in A \colon \sum_{i \in S} x_i \ge v(S) \text{ for all } S \subset N \right\}.$$

For any solution K, $C \subset K$ and $K \cap Dom C = \phi$.

A characteristic function v is superadditive if $v(S_1 \cup S_2) \ge v(S_1) + v(S_2)$ whenever $S_1 \cap S_2 = \phi$. The game listed below does not have a superadditive v as assumed in the classical theory. However, it is equivalent solutionwise to a game with a superadditive v. (See Gillies [1, p. 68].)

¹ This research is sponsored by the United States Air Force under Project RAND.