GLOBAL RATIO LIMIT THEOREMS FOR SOME NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS. I

BY STEPHEN GROSSBERG

Communicated by Norman Levinson, August 31, 1967

1. Introduction. We study some systems of nonlinear functionaldifferential equations of the form

(1)
$$\dot{X}(t) = AX(t) + B(X_t)X(t-\tau) + C(t), t \ge 0,$$

where $X = (x_1, \dots, x_n)$ is nonnegative, $B(X_t) = ||B_{ij}(t)||$ is a matrix of nonlinear functionals of X(w) evaluated at all past times $w \in [-\tau, t]$, and $C = (C_1, \dots, C_n)$ is a known nonnegative and continuous input function. For appropriate A, B, and C, these systems can be interpreted as a nonstationary prediction theory whose goal is to discuss the prediction of individual events, in a fixed order, and at prescribed times, or alternatively as a mathematical learning theory. This interpretation is discussed in a special case in [1]. The systems can also be interpreted as cross-correlated flows on networks, or as deformations of probabilistic graphs.

The mathematical content of these interpretations is contained in assertions of the following kind: given arbitrary positive and continuous initial data along with a suitable input C, the ratios $y_{jk}(t) = B_{kj}(t) (\sum_{m=1}^{n} B_{km}(t))^{-1}$ have limits as $t \to \infty$.

Our systems are defined in the following way. Given any positive integer *n*; any real numbers α , *u*, $\beta > 0$, and $\tau \ge 0$; and any $n \times n$ semistochastic matrix $P = ||p_{ij}||$ (i.e., $p_{ij} \ge 0$ and $\sum_{m=1}^{n} p_{im} = 0$ or 1), let

(2)
$$\dot{x}_i(t) = -\alpha x_i(t) + \beta \sum_{k=1}^n x_k(t-\tau) y_{ki}(t) + C_i(t),$$

(3)
$$y_{jk}(t) = p_{jk} z_{jk}(t) \left[\sum_{m=1}^{n} p_{jm} z_{jm}(t) \right]^{-1},$$

and

(4)
$$\dot{z}_{jk}(t) = [-uz_{jk}(t) + \beta x_j(t-\tau)x_k(t)]\theta(p_{jk}),$$

for all $i, j, k = 1, 2, \cdots, n$, where

$$\begin{aligned} \theta(p) &= 1 \quad \text{if } p > 0, \\ &= 0 \quad \text{if } p \leq 0. \end{aligned}$$

In order that our theorems hold, the initial data must always be non-