QUANTIZATION AND REPRESENTATIONS OF SOLVABLE LIE GROUPS

BY L. AUSLANDER AND B. KOSTANT ${ }^{1}$
Communicated by Felix Browder, April 10, 1967

Introduction. In this note, we will announce a characterization of a connected, simply connected Type I solvable Lie group, G, and present a complete description of the set of all unitary equivalence classes of irreducible unitary representations of G together with a construction of an irreducible representation in each equivalence class. This result subsumes the results previously obtained on nilpotent Lie groups and solvable Lie groups of exponential type of Kirillov [3] and Bernat [2], respectively.

Our result is made possible by a merging of a new general geometric approach to representation theory, based on the use of symplectic manifolds and quantization, of the second author with a detailed analysis of the Mackey inductive procedure which augments the results in [1].

1. Outline of results. Let (X, ω) be a symplectic manifold; i.e., a $2 n$-dimensional manifold with a closed 2 -form ω such that ω^{n} does not vanish on X and $d \omega=0$ on X. Let $[\omega] \in H^{2}(X, R)$ be the corresponding deRham class. A vital example of a symplectic manifold, for our purposes, is obtained as follows: Let G be a Lie group with Lie algebra \mathfrak{g} and let \mathfrak{g}^{\prime} be the dual vector space to \mathfrak{g}. Then G acts on \mathfrak{g}^{\prime} by the contragredient representation and we will denote a G-orbit by O and the set of G-orbits by \mathcal{O}. After several identifications it is possible to use the bilinear form $\langle f,[x, y]\rangle, x, y \in \mathfrak{g}, f \in \mathfrak{g}^{\prime}$ to define a 2 -form ω_{0} on each O such that $\left(O, \omega_{o}\right)$ is a symplectic manifold.

Theorem 1. Let G be a connected, simply connected solvable Lie group. Then G is Type I if and only if
(a) all G-orbits in \mathfrak{g}^{\prime} are G_{δ} sets in the usual topology on \mathfrak{g}.
(b) $\left[\omega_{o}\right]=0$ for all $O \in \mathcal{O}$.

Remark. All algebraic Lie groups are Type I.
In general if (X, ω) is any symplectic manifold then there exists a complex line bundle L with connection α such that ω is the curvature form of the connection $\alpha, \omega=\operatorname{curv}(L, \alpha)$, if and only if the deRham

[^0]
[^0]: ${ }^{1}$ The first author received partial support from the N.S.F. and U. S. Naval Research Laboratory and the second author received partial support from the N.S.F. and the Sloan Foundation.

